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ABSTRACT 

In this paper, we consider the Moore-Gibson-Thompson equation with a finite 

memory term. Under appropriate assumptions on the convolution kernel, for 

the well-posedness of this problem using semi-group theory ([4] as [9] and 

[17]) and introducing suitable Lyapunov functionals to demonstrate the 

exponential stability of the energy function.  
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1. Introduction 

In this work, we are interested in the following abstract version of the Moore-Gibson-Thompson equation (MGTE) 

with a memory term  

 

𝜏𝑢𝑡𝑡𝑡 + 𝛼𝑢𝑡𝑡 − 𝑐2𝛥𝑢 − 𝑏𝛥𝑢𝑡 + 𝜇𝑢𝑡

 + ∫ 𝑔(𝑡 − 𝑠)𝛥𝑢(𝑠)𝑑𝑠
𝑡

0
= 0, (𝑥, 𝑡) ∈ 𝛺 × 𝑅+,

𝑢(𝑥, 𝑡) = 0,   (𝑥, 𝑡) ∈ 𝜕𝛺 × 𝑅+,

𝑢(𝑥, 0) = 𝑢0(𝑥),  𝑢𝑡(𝑥, 0) = 𝑢1(𝑥),  𝑢𝑡𝑡(𝑥, 0) = 𝑢2(𝑥), 𝑥 ∈ 𝛺,

 (1.1) 

where 𝑏, 𝛼, 𝜇, and 𝜏 are strictly positive constants. the convolution term ∫ 𝑔(𝑡 − 𝑠)𝛥𝑢(𝑠)𝑑𝑠
𝑡

0
 reflects the memory effect 

of viscoelastic materials, and the "memory kernel" 𝑔(𝑡): 𝑅+ → 𝑅+ is directly related to the energy decay. 

The MGT equation is one of the nonlinear acoustic equations describing the propagation of acoustic waves in 

gasses and liquids; see, for example, [3, 9, 16]. The equation (1.1) arises from the modeling of high-frequency 

ultrasonic waves, taking into account heat flow and molecular relaxation times; please see [1, 6, 7]. 

According to revisited extended irreversible thermodynamics, heat flux relaxation leads to a third-order time 

derivative, while molecular relaxation leads to nonlocal effects governed by memory terms.  

Due to the wide range of applications, such as medical and industrial uses of high intensity ultrasound in 

lithotripsy, thermotherapy, ultrasonic cleaning, etc., many studies have been conducted in this field of research. 

In [9], Kaltenbacher, Lasiecka and Marchand studied the following linearized MGT equation  

 𝜏𝑢𝑡𝑡𝑡 + 𝛼𝑢𝑡𝑡 + 𝑐2𝐴𝑢 + 𝑏𝐴𝑢𝑡 = 0. 

For this equation, they showed that when the critical parameter 𝛾 = 𝛼 −
𝑐2𝜏

𝑏
> 0 is in the subcritical condition, the 

problem is well-posed and its solution is exponentially stable. Whereas when 𝛾 = 0, energy is conserved. 

Since its appearance, there has been a growing interest in studying the long-time asymptotic behaviors of the 

MGT equation; please see [3, 5, 14]. Caixeta, Lasiecka and Cavalcanti [3] considered the following nonlinear equation  

 𝜏𝑢𝑡𝑡𝑡 + 𝛼𝑢𝑡𝑡 + 𝑐2𝐴𝑢 + 𝑏𝐴𝑢𝑡 = 𝑓(𝑢, 𝑢𝑡 , 𝑢𝑡𝑡), 

and they obtained that the problem is locally well-posed with an arbitrary size of the initial data and the existence 

of a global and finite-dimensional attractor; see [5, 8]. 

Now, we focus on stabilizing the MGT equation with memory, which has received considerable attention recently. 

For example, Lasiecka and Wang [11] studied the following equation:  

 𝜏𝑢𝑡𝑡𝑡 + 𝛼𝑢𝑡𝑡 + 𝑐2𝐴𝑢 + 𝑏𝐴𝑢𝑡 + ∫ 𝑔(𝑡 − 𝑠)
𝑡

0
𝐴𝑤(𝑠)𝑑𝑠 = 0, (1.2) 

For the above equation, they studied the effect of memory described by three types on energy decay rates when 

𝛼 −
𝑐2𝜏

𝑏
> 0. Then, in the case 𝛼 −

𝑐2𝜏

𝑏
= 0, they showed that the memory term provided an exponential energy decay. 

Furthermore, Lasiecka and Wang [10] established the general decay result of the (1.2) equation when 𝑤 = 𝑢 and 

𝑔 satisfy 𝑔(𝑡) ≤ −𝐻(𝑔(𝑡)). 

In [6], Filippo et al. studied the critical case 𝛼𝛽 = 𝛾 of the (1.2) equation when 𝑤 = 𝑢, 𝜏 = 1, 𝑐2 = 𝛾, and 𝑔 satisfy 

𝑔(𝑡) ≤ −𝛿𝑔(𝑡) and proved an exponential decay of the energy if and only if 𝐴 is a bounded operator. 
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In the same case above, W. Liu et al. in [12] studied the equation (1.2) and obtained a general decay result for a 

class of relaxation functions that satisfies 𝑔′(𝑡) ≤ −𝜉(𝑡)𝐻(𝑔(𝑡)) such that 𝐻 is increasing and a convex function near 

the origin, and 𝜉(𝑡) is a non-increasing function. 

The aim of this paper is to study the asymptotic behavior of the solutions of the MGT equation with memory 

(1.1). For this, we use the idea developed by Wenjun Liu et al. in [12], taking into account the nature of the MGT 

equation, and we prove new general decay results for the subcritical case (𝛽𝛼 − 𝜏𝑐2 > 0). Our results considerably 

improve and generalize the previously related findings of exponential and general decay under the subcritical 

conditions described in the literature. The proof is based on the perturbed energy method and some properties of 

convex functions, with arguments from [10, 15] and [18]. The rest of this work is written as follows. In Section 2, we 

present some assumptions and state the general decay result. In Section 3, we state and prove some technical 

lemmas that are necessary for the remainder of this document. In Section 4, we prove our main result. 

2. Preliminaries and Main Result 

We consider the following hypotheses and state our main result.  

First, we consider the following hypotheses as in [10] and [11] for H1, H3 , and [2] for H2, H4 , with a small 

modification:  

H1 : 𝑏𝛼 − 𝜏𝑐2 > 0.  

H2: The function 𝑔: 𝑅+ → 𝑅+ is a non-increasing, differentiable function such that  

 0 < 𝑔(0) < 𝛼(𝑏𝛼 − 𝜏𝑐2),  𝑐2 − ∫ 𝑔(𝑠)𝑑𝑠
𝑡

0
= 𝑙 > 0. 

H3: There exists a positive constant 𝑐𝑝 such that for all 𝑤 in the Hilbert space 𝐻,  

 ‖𝑤‖ ≤ 𝑐𝑝‖𝛻𝑤‖. 

H4: There exists a constant 𝐾 > 0 such that  

 
𝑑

𝑑𝜏
𝑔(𝜏) ≤ −𝐾𝑔(𝜏),  ∀𝜏 > 0. 

The following lemma plays a very important role in the proofs of the lemmas and our main result.  

Lemma 2.1 [10] Lemma 2.10  

If 0 < 𝑔(0) < 𝛼(𝑏𝛼 − 𝑐2𝜏) then there exists 𝜎 > 0 such that  

 𝑔(0) < (
𝛼−𝜎

𝜏2 )(𝑏𝛼 − 𝑐2𝜏), 

or equivalently  

 𝑏𝛼 − 𝑐2𝜏 −
𝑔(0)𝜏2

2(𝛼−𝜎)
> 0. (2.1) 

We now announce, without proof, the following standard existence and regularity result.  

Proposition 2.2 [11]  

Under the hypotheses H1- H3 , the problem (1.1) admits a unique weak solution 𝑢 verifying  

 𝑢 ∈ 𝐶1(𝑅+; 𝐻0
1) ∩ 𝐶2(𝑅+; 𝐻). 

Next, we introduce the energy function associated with our problem, which is defined by:  
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𝐸(𝑡): =
1

2
‖𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡‖2 +

𝑐2−𝐺(𝑡)

2𝛼
‖𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢‖2 +

𝜏𝜇

2
𝑃𝑢𝑡𝑃2

+𝜏 ∫ ∫ 𝑔(𝑡 − 𝑠)[𝛻𝑢 − 𝛻𝑢(𝑠)]
𝑡

0𝛺
𝑑𝑠𝛻𝑢𝑡𝑑𝑥 +

𝛼

2
𝑔 ∘ 𝛻𝑢

+ (
𝜏𝑏

2
+

𝜏2(𝐺(𝑡)−𝑐2)

2𝛼
) 𝑃𝛻𝑢𝑡𝑃2,

 (2.2) 

where 𝐺(𝑡) = ∫ 𝑔(𝑠)𝑑𝑠
𝑡

0
 and for all 𝑤 ∈ 𝐿𝑙𝑜𝑐

2 (𝑅+; 𝐿2(𝛺)),  

 (𝑔 ∘ 𝑤)(𝑡): = ∫ ∫ 𝑔(𝑡 − 𝑠)(𝑤(𝑡) − 𝑤(𝑠))2𝑡

0𝛺
𝑑𝑠𝑑𝑥. 

We are now in a position to state the general decay result for problem (1.1).  

Theorem 2.3 Let (𝑢0, 𝑢1, 𝑢2) ∈ 𝐻0
1 × 𝐻0

1 × 𝐻. Suppose that H1-H3 hold . Then there exist positive constants 𝜔1 and 

𝜔2 such that, along the solution of problem (1.1), the energy function satisfies  

 𝐸(𝑡) ≤ 𝜔1𝑒−𝜔2𝑡 ,forall  𝑡 ≥ 0. 

3. Important Lemmas 

In this section, we announce and present some lemmas necessary to establish our main result.  

Lemma 3.1 Let (𝑢, 𝑢𝑡 , 𝑢𝑡𝑡) be a solution of (1.1). Suppose that H1 and H2 are verified. Then the function 𝐸(𝑡) 

satisfies  

 

𝑑

𝑑𝑡
𝐸(𝑡) ≤ [𝑐2𝜏 − 𝑏𝛼 +

𝜏2𝑔(0)

2(𝛼−𝛿)
+ 𝜏2 (

𝑔(𝑡)

2𝛼
−

𝑔(𝑡)

2(𝛼−𝛿)
)] 𝑃𝛻𝑢𝑡𝑃2

−𝛼𝜇𝑃𝑢𝑡𝑃2 +
𝛿

2
𝑔′ ∘ 𝛻𝑢 −

𝑔(𝑡)

2𝛼
‖𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢‖2.

 (3.1) 

Proof : We multiply (1.1) by (𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡) then we integrate by part on 𝛺, we obtain  

 

𝑑

𝑑𝑡
[

1

2
𝑃𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡𝑃2 + 𝜏𝑐2 ∫ 𝛻𝑢𝛻𝑢𝑡𝑑𝑥

𝛺
+

𝑏𝜏

2
𝑃𝛻𝑢𝑡𝑃2 +

𝛼𝑐2

2
𝑃𝛻𝑢𝑃2 + 𝜇𝜏𝑃𝑢𝑡𝑃2]

   +(𝑏𝛼 − 𝜏𝑐2)𝑃𝛻𝑢𝑡𝑃2 + 𝜇𝛼𝑃𝑢𝑡𝑃2 − ∫ 𝛻(𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡)
𝛺

∫ 𝑔(𝑡 − 𝑠)
𝑡

0
𝛻𝑢(𝑠)𝑑𝑠𝑑𝑥 = 0.

 (3.2) 

Let us now move on to estimating the last integral of the above equality  

 

𝐼0  =   − ∫ 𝛻(𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡)
𝛺

∫ 𝑔(𝑡 − 𝑠)𝛻𝑢(𝑠)𝑑𝑠𝑑𝑥
𝑡

0

 =   ∫ ∫ 𝑔(𝑡 − 𝑠)
𝑡

0𝛺
(𝛻𝑢 − 𝛻𝑢(𝑠))𝑑𝑠(𝜏𝛻𝑢𝑡𝑡 + 𝛼𝛻𝑢𝑡)𝑑𝑥

      − ∫ ∫ 𝑔(𝑡 − 𝑠)
𝑡

0𝛺
𝛻𝑢(𝜏𝛻𝑢𝑡𝑡 + 𝛼𝛻𝑢𝑡)𝑑𝑠𝑑𝑥

 

 

𝐼0  =  𝜏 ∫ ∫ 𝑔(𝑡 − 𝑠)
𝑡

0𝛺

𝑑

𝑑𝑡
[(𝛻𝑢 − 𝛻𝑢(𝑠))𝛻𝑢𝑡]𝑑𝑠𝑑𝑥

      −
𝛼

2
∫ ∫ 𝑔(𝑡 − 𝑠)

𝑡

0𝛺

𝑑

𝑑𝑡
(𝛻𝑢)2𝑑𝑠𝑑𝑥

      −𝜏 ∫ ∫ 𝑔(𝑡 − 𝑠)
𝑡

0𝛺

𝑑

𝑑𝑡
(𝛻𝑢. 𝛻𝑢𝑡)𝑑𝑠𝑑𝑥

      +
𝛼

2
∫ ∫ 𝑔(𝑡 − 𝑠)

𝑡

0𝛺

𝑑

𝑑𝑡
(𝛻𝑢 − 𝛻𝑢(𝑠))2𝑑𝑠𝑑𝑥

 =  
𝑑

𝑑𝑡
[𝜏 ∫ ∫ 𝑔(𝑡 − 𝑠)

𝑡

0𝛺
[𝛻𝑢 − 𝛻𝑢(𝑠)]𝑑𝑠𝛻𝑢𝑡𝑑𝑥 +

𝛼

2
𝑔 ∘ 𝛻𝑢

      −
𝛼𝐺(𝑡)

2
𝑃𝛻𝑢𝑃2 − 𝜏 ∫ ∫ 𝑔(𝑡 − 𝑠)

𝑡

0𝛺
[𝛻𝑢𝛻𝑢𝑡]𝑑𝑠𝑑𝑥]

      +
𝛼

2
∫ ∫ 𝑔′(𝑡 − 𝑠)

𝑡

0𝛺
(𝛻𝑢)2𝑑𝑠𝑑𝑥

      −
𝛼

2
∫ ∫ 𝑔′(𝑡 − 𝑠)

𝑡

0𝛺
(𝛻𝑢 − 𝛻𝑢(𝑠))2𝑑𝑠𝑑𝑥

      +𝜏 ∫ ∫ 𝑔′(𝑡 − 𝑠)
𝑡

0𝛺
𝛻𝑢. 𝛻𝑢𝑡𝑑𝑠𝑑𝑥

      −𝜏 ∫ ∫ 𝑔′(𝑡 − 𝑠)
𝑡

0𝛺
(𝛻𝑢 − 𝛻𝑢(𝑠))𝑑𝑠. 𝛻𝑢𝑡𝑑𝑥.

 (3.3) 
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Then, by combining the definition of the function 𝐸(𝑡), (3.2) and (3.3), we can obtain  

 

𝑑

𝑑𝑡
𝐸(𝑡)  =   (𝑐2𝜏 − 𝑏𝛼 +

𝑔(𝑡)𝜏2

2𝛼
) ‖𝛻𝑢𝑡‖2 − 𝛼𝜇‖𝑢𝑡‖2 +

𝛼

2
𝑔′ ∘ 𝛻𝑢

−
𝑔(𝑡)

2𝛼
𝑃𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢𝑃2 + 𝜏 ∫ ∫ 𝑔′(𝑡 − 𝑠)

𝑡

0𝛺
[𝛻𝑢 − 𝛻𝑢(𝑠)]𝑑𝑠𝛻𝑢𝑡𝑑𝑥.

 (3.4) 

Then we have  

 

𝜏 ∫ ∫ 𝑔′(𝑡 − 𝑠)
𝑡

0𝛺
[𝛻𝑢 − 𝛻𝑢(𝑠)]𝑑𝑠𝛻𝑢𝑡𝑑𝑥

 ≤  𝜏 ∫ ∫ [√−𝑔′(𝑡 − 𝑠)| 𝛻𝑢 − 𝛻𝑢(𝑠)| ]
𝑡

0𝛺
× [√−𝑔′(𝑡 − 𝑠)| 𝛻𝑢𝑡| ]𝑑𝑠𝑑𝑥

 ≤  𝜏 [∫ (∫ −𝑔′(𝑡 − 𝑠)| 𝛻𝑢𝑡| 2𝑑𝑠
𝑡

0
)

1

2

𝛺

 × (∫ −𝑔′(𝑡 − 𝑠)| 𝛻𝑢 − 𝛻𝑢(𝑠)| 2𝑑𝑠
𝑡

0
)

1

2
𝑑𝑥]

 ≤  𝜏 [−
𝛼−𝛿

2𝜏
𝑔′ ∘ 𝛻𝑢 −

𝜏

2(𝛼−𝛿)
∫ 𝑔′(𝑡 − 𝑠)

𝑡

0
𝑑𝑠‖𝛻𝑢𝑡‖2] .

 (3.5) 

Replacing (3.5) in (3.4), we find  

 

𝑑

𝑑𝑡
𝐸(𝑡)   ≤  [𝑐2𝜏 − 𝑏𝛼 +

𝜏2𝑔(0)

2(𝛼−𝛿)
+ 𝜏2 (

𝑔(𝑡)

2𝛼
−

𝑔(𝑡)

2(𝛼−𝛿)
)] ‖𝛻𝑢𝑡‖2

   −𝛼𝜇‖𝑢𝑡‖2 +
𝛿

2
𝑔′ ∘ 𝛻𝑢 −

𝑔(𝑡)

2𝛼
‖𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢‖2.

 (3.6) 

By Lemma 2.1 and H1-H2, we have reached the end of the proof.  

For the rest, we state the following lemma:  

Lemma 3.2 Under the hypotheses H1-H3, the function 𝐸 satisfies  

 

‖𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡‖2 +
𝑐2−𝐺(𝑡)

𝛼
‖𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢‖2 + 𝜇𝜏‖𝑢𝑡‖2 +

𝜏(𝑏𝛼−𝜏𝑐2)

𝛼
‖𝛻𝑢𝑡‖2

≤ 2𝐸(𝑡)                                                            

                          ≤ ‖𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡‖2 +
𝑐2−𝐺(𝑡)

𝛼
‖𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢‖2 + 𝜇𝜏‖𝑢𝑡‖2

+2𝛼𝑔 ∘ 𝛻𝑢 +
𝜏(𝑏𝛼−𝜏(𝑐2−2𝐺(𝑡)))

𝛼
‖𝛻𝑢𝑡‖2.    

 (3.7) 

Proof : By definition of the energy function 𝐸, we have:  

 

𝐸(𝑡) =
1

2
[‖𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡‖2 +

𝑐2−𝐺(𝑡)

𝛼
‖𝜏𝑢𝑡 + 𝛼𝑢‖2 + 𝜇𝜏‖𝑢𝑡‖2

+𝛼𝑔 ∘ 𝛻𝑢 +
𝜏(𝑏𝛼−𝜏(𝑐2−2𝐺(𝑡)))

𝛼
‖𝛻𝑢𝑡‖2

+2𝜏 ∫ ∫ 𝑔(𝑡 − 𝑠)
𝑡

0𝛺
[𝛻𝑢 − 𝛻𝑢(𝑠)]𝑑𝑠𝛻𝑢𝑡𝑑𝑥] .

 

First, we estimate the last term of the above equality  

 

𝐿1 =  2𝜏 ∫ ∫ 𝑔(𝑡 − 𝑠)
𝑡

0𝛺
|𝛻𝑢 − 𝛻𝑢(𝑠)|𝑑𝑠|𝛻𝑢𝑡|𝑑𝑥

≤  2𝜏 ∫ 𝑔(𝑡 − 𝑠)
𝑡

0
(∫ |𝛻𝑢 − 𝛻𝑢(𝑠)|2

𝛺
𝑑𝑥)

1

2(∫ |𝛻𝑢𝑡|2
𝛺

𝑑𝑥)
1

2𝑑𝑠

≤  ∫ (𝑡 − 𝑠)
𝑡

0
𝑔 [𝛼‖𝛻𝑢 − 𝛻𝑢(𝑠)‖2 +

𝜏2

𝛼
‖𝛻𝑢𝑡‖2] 𝑑𝑠

≤  𝛼𝑔 ∘ 𝛻𝑢 +
𝜏2𝐺(𝑡)

𝛼
‖𝛻𝑢𝑡‖2.

 

This implies that  

 −𝛼𝑔 ∘ 𝛻𝑢 −
𝜏2𝐺(𝑡)

𝛼
‖𝛻𝑢𝑡‖2 ≤ 𝐿1 ≤ 𝛼𝑔 ∘ 𝛻𝑢 +

𝜏2𝐺(𝑡)

𝛼
‖𝛻𝑢𝑡‖2. 
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The proof is finished. Now we can define the functional 𝐹(𝑡) as follows:  

 𝐹(𝑡) = ∫ (𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡)
𝛺

(𝜏𝑢𝑡 + 𝛼𝑢)𝑑𝑥 +
𝜇𝛼

2
∫ 𝑢2

𝛺
𝑑𝑥. 

Lemma 3.3 Suppose that H1 -H3 are verified. Then, the functional 𝐹(𝑡) satisfies the estimate  

 
𝐹′(𝑡) ≤  𝑃𝜏𝛻𝑢𝑡𝑡 + 𝛼𝛻𝑢𝑡𝑃2 −

𝑙

4𝛼
𝑃𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢𝑃2 − 𝜇𝜏𝑃𝑢𝑡𝑃2

 + (
𝜏2(𝑐2−𝑙)2

𝑙𝛼
+

𝛼

𝑙
(𝑏 −

𝜏𝑐2

𝛼
)

2

) 𝑃𝛻𝑢𝑡𝑃2 +
𝛼(𝑐2−𝑙)

𝑙
𝑔 ∘ 𝛻𝑢.

 (3.8) 

Proof : By differentiating the function 𝐹(𝑡) with respect to 𝑡, by exploiting the equation (1.1) and by integrating 

by parts, we obtain  

 

𝐹′(𝑡) = ‖𝜏𝛻𝑢𝑡𝑡 + 𝛼𝛻𝑢𝑡‖2 + ∫ (𝜏𝑢𝑡𝑡𝑡 + 𝛼𝑢𝑡𝑡)
𝛺

(𝜏𝑢𝑡 + 𝛼𝑢)𝑑𝑥 + 𝜇𝛼 ∫ 𝑢𝑡𝑢𝑑𝑥
𝛺

= ∫ [𝑐2𝛥𝑢 + 𝑏𝛥𝑢𝑡 − 𝜇𝑢𝑡 − ∫ 𝑔(𝑡 − 𝑠)
𝑡

0
𝛥𝑢(𝑠)𝑑𝑠]

𝛺
(𝜏𝑢𝑡 + 𝛼𝑢)𝑑𝑥

+𝜇𝛼 ∫ 𝑢𝑡𝑢𝑑𝑥
𝛺

+ ‖𝜏𝛻𝑢𝑡𝑡 + 𝛼𝛻𝑢𝑡‖2

= −
𝑐2

𝛼
‖𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢‖2 + (

𝜏𝑐2

𝛼
− 𝑏) ∫ 𝛻𝑢𝑡(𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢)𝑑𝑥

𝛺

−𝜇𝜏𝑃𝑢𝑡𝑃2 + ∫ ∫ 𝑔(𝑡 − 𝑠)
𝑡

0𝛺
𝛻𝑢(𝑠)𝑑𝑠(𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢)𝑑𝑥

+‖𝜏𝛻𝑢𝑡𝑡 + 𝛼𝛻𝑢𝑡‖2,

 (3.9) 

we note that  

 𝐼1 = (
𝜏𝑐2

𝛼
− 𝑏) ∫ 𝛻𝑢𝑡(𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢)

𝛺
𝑑𝑥, 

and  

 𝐼2 = ∫ ∫ 𝑔(𝑡 − 𝑠)
𝑡

0𝛺
𝛻𝑢(𝑠)𝑑𝑠(𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢)𝑑𝑥. 

Using Young’s inequality, Lemma 2.1 and the fact that 𝑏𝛼 − 𝑐2 > 0, we have  

 𝐼1 ≤
𝛼

𝑙
(𝑏 −

𝜏𝑐2

𝛼
)

2

𝑃𝛻𝑢𝑡𝑃2 +
𝑙

4𝛼
𝑃𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢𝑃2. (3.10) 

and  

 

𝐼2 =  ∫ ∫ 𝑔(𝑡 − 𝑠)
𝑡

0𝛺
[𝛻𝑢(𝑠) − 𝛻𝑢]𝑑𝑠(𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢)𝑑𝑥

 +
𝐺(𝑡)

𝛼
[𝑃𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢𝑃2 − ∫ 𝜏𝛻𝑢𝑡(𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢)

𝛺
𝑑𝑥]

≤  
𝛼𝐺(𝑡)

𝑙
𝑔 ∘ 𝛻𝑢 +

𝑙+2𝐺(𝑡)

2𝛼
𝑃𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢𝑃2 +

(𝐺(𝑡)𝜏)2

𝑙𝛼
𝑃𝛻𝑢𝑡𝑃2.

 

Substituting 𝐼1 and 𝐼2 into (3.9), we obtain the following:  

 
𝐹′(𝑡) ≤  𝑃𝜏𝛻𝑢𝑡𝑡 + 𝛼𝛻𝑢𝑡𝑃2 −

𝑙

4𝛼
𝑃𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢𝑃2 − 𝜇𝜏𝑃𝑢𝑡𝑃2

 + (
𝜏2(𝑐2−𝑙)2

𝑙𝛼
+

𝛼

𝑙
(𝑏 −

𝜏𝑐2

𝛼
)

2

) 𝑃𝛻𝑢𝑡𝑃2 +
𝛼(𝑐2−𝑙)

𝑙
𝑔 ∘ 𝛻𝑢.

 

Lemma 3.4 We assume that H1 - H3 are satisfied. Then, the functional 𝐻(𝑡) is defined by:  

 𝐻(𝑡) = − ∫ (𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡)
𝛺

∫ 𝑔(𝑡 − 𝑠)
𝑡

0
[𝜏𝑢𝑡 + 𝛼𝑢 − 𝛼𝑢(𝑠)]𝑑𝑠𝑑𝑥, 

meets the estimate  
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𝐻′(𝑡) ≤ − (∫ 𝑔(𝑠)𝑑𝑠
𝑡

0
− 𝜀𝑐0

′ ) ‖𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡‖2 + 𝜀𝑐1
′ ‖𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢‖2

+𝑐1 (𝜀  +
1

𝜀
) ‖𝛻𝑢𝑡‖2 + 𝑐2 (𝜀 +

1

𝜀
+ 1) 𝑔 ∘ 𝛻𝑢                        

+𝑐3 (
1

𝜀
+ 1) ‖𝑢𝑡‖2 −

1

𝜀
𝑐4𝑔′ ∘ 𝛻𝑢,                                              

 (3.11) 

where  

 𝑐0 = 𝑐2 − ∫ 𝑔(𝑠)𝑑𝑠
𝑡

0
, 

 𝑐0
′ =

𝜏𝑔(0)

2
+ 𝛼 + 1, 𝑐1

′ = 2(𝛼 + 1) (
𝑐0

𝛼
)

2

, 

 𝑐1 = 𝑚𝑎𝑥 {𝑐1
′ (

𝑏𝛼

𝑐0
− 𝜏)

2

,
1

4
(𝜏 ∫ 𝑔(𝑠)𝑑𝑠

𝑡

0
)

2

} ,   𝑐2 = (1 + 𝑐𝑝) ∫ 𝑔(𝑠)𝑑𝑠
𝑡

0
, 

 𝑐3 = 𝑚𝑎𝑥 {𝜇𝜏 ∫ 𝑔(𝑠)
𝑡

0
𝑑𝑠,

(𝛼𝜇)2+2(𝜏 ∫ 𝑔′𝑡
0 (𝑠)𝑑𝑠)

2

4
}, 

and  

 𝑐4 =
𝑔(0)−𝑔(𝑡)

2
𝛼𝑐𝑝. 

Proof : By differentiating the function 𝐻 with respect to 𝑡 and using the equation (1.1), then, by integrating by 

parts, we obtain:  

 

𝐻′(𝑡) =  ∫ [−𝑏𝛥𝑢𝑡 − 𝑐2𝛥𝑢 + 𝜇𝑢𝑡]
𝛺

∫ 𝑔(𝑡 − 𝑠)
𝑡

0
[𝜏𝑢𝑡 + 𝛼𝑢 − 𝛼𝑢(𝑠)]𝑑𝑠𝑑𝑥

+ ∫ [∫ 𝑔(𝑡 − 𝑠)
𝑡

0
𝛥𝑢(𝑠)𝑑𝑠]

𝛺
∫ 𝑔(𝑡 − 𝑠)

𝑡

0
[𝜏𝑢𝑡 + 𝛼𝑢 − 𝛼𝑢(𝑠)]𝑑𝑠𝑑𝑥

− ∫ (𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡)
𝛺

∫ 𝑔′(𝑡 − 𝑠)
𝑡

0
[𝜏𝑢𝑡 + 𝛼𝑢 − 𝛼𝑢(𝑠)]𝑑𝑠𝑑𝑥                

− (∫ 𝑔(𝑠)𝑑𝑠
𝑡

0
) ‖𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡‖2 − 𝜏𝑔(0) ∫ (𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡)𝑢𝑡𝑑𝑥

𝛺
         

=  ∫ (𝑏𝛻𝑢𝑡 + (𝑐2 − ∫ 𝑔(𝑠)
𝑡

0
𝑑𝑠) 𝛻𝑢)

𝛺
                                                     

                          × ∫ 𝑔(𝑡 − 𝑠)
𝑡

0
[𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢 − 𝛼𝛻𝑢(𝑠)]𝑑𝑠𝑑𝑥

+𝛼 ∫ (∫ 𝑔(𝑡 − 𝑠)
𝑡

0
(𝛻𝑢 − 𝛻𝑢(𝑠))𝑑𝑠)

2

𝛺
𝑑𝑥                                        

+ ∫ (∫ 𝑔(𝑡 − 𝑠)
𝑡

0
(𝛻𝑢 − 𝛻𝑢(𝑠))𝑑𝑠)

𝛺
∫ 𝑔(𝑡 − 𝑠)

𝑡

0
𝛻𝑢𝑡𝑑𝑠𝑑𝑥           

            +𝜇 ∫ 𝑢𝑡 ∫ 𝑔(𝑡 − 𝑠)
𝑡

0𝛺
𝜏𝑢𝑡𝑑𝑠𝑑𝑥 + 𝛼𝜇 ∫ 𝑢𝑡 ∫ 𝑔(𝑡 − 𝑠)

𝑡

0𝛺
(𝑢 − 𝑢(𝑠))𝑑𝑠𝑑𝑥

− ∫ 𝑔(𝑠)𝑑𝑠
𝑡

0
‖𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡‖2 − 𝜏𝑔(0) ∫ (𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡)

𝛺
𝑢𝑡𝑑𝑥          

− ∫ (𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡)
𝛺

∫ 𝑔′𝑡

0
(𝑡 − 𝑠)[𝜏𝑢𝑡 + 𝛼𝑢 − 𝛼𝑢(𝑠)]𝑑𝑠𝑑𝑥.            

    

Now, we estimate the terms 𝐻1 − 𝐻6 on the right side of the above equality. Let’s calculate the first one, which 

we denote by 𝐻1  

 
𝐻1 = 𝜏 ∫ (𝑏𝛻𝑢𝑡 + (𝑐2 − ∫ 𝑔(𝑠)

𝑡

0
𝑑𝑠) 𝛻𝑢)

𝛺
(∫ 𝑔(𝑠)

𝑡

0
𝑑𝑠) 𝛻𝑢𝑡𝑑𝑥

                       +𝛼 ∫ (𝑏𝛻𝑢𝑡 + (𝑐2 − ∫ 𝑔(𝑠)
𝑡

0
𝑑𝑠) 𝛻𝑢)

𝛺
∫ 𝑔(𝑡 − 𝑠)

𝑡

0
[𝛻𝑢 − 𝛻𝑢(𝑠)]𝑑𝑠𝑑𝑥.

 

Using Young’s inequality, we obtain, for 0 < 𝜀 < 1,  
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 𝐻1 ≤ 𝜀 ∫ [𝑏𝛻𝑢𝑡 + (𝑐2 − ∫ 𝑔(𝑠)
𝑡

0
𝑑𝑠) 𝛻𝑢]

2

𝛺
𝑑𝑥 +

1

4𝜀
(𝜏 ∫ 𝑔(𝑠)

𝑡

0
𝑑𝑠)

2
‖𝛻𝑢𝑡‖2

+𝜀𝛼 ∫ [𝑏𝛻𝑢𝑡 + (𝑐2 − ∫ 𝑔(𝑠)
𝑡

0
𝑑𝑠) 𝛻𝑢]

2

𝛺
𝑑𝑥                                               

+
𝛼

4𝜀
∫ (∫ 𝑔(𝑡 − 𝑠)

𝑡

0
[𝛻𝑢 − 𝛻𝑢(𝑠)]𝑑𝑠)

2

𝛺
𝑑𝑥,                                               

 

 

𝐻1 ≤ 𝜀(𝛼 + 1) ∫ (
𝑐2−∫ 𝑔(𝑠)𝑑𝑠

𝑡
0

𝛼
)

2

𝛺
[

𝑏𝛼

(𝑐2−∫ 𝑔(𝑠)
𝑡

0 𝑑𝑠)
𝛻𝑢𝑡 + 𝛼𝛻𝑢]

2

𝑑𝑥                       

+
1

4𝜀
(𝜏 ∫ 𝑔(𝑠)𝑑𝑠

𝑡

0
)

2
‖𝛻𝑢𝑡‖2 +

𝛼

4𝜀
∫ (∫ 𝑔(𝑡 − 𝑠)

𝑡

0
[𝛻𝑢 − 𝛻𝑢(𝑠)]𝑑𝑠)

2

𝛺
𝑑𝑥

≤ 𝑐1 (𝜀 +
1

𝜀
) ‖𝛻𝑢𝑡‖2 + 2𝜀(𝛼 + 1) (

𝑐0

𝛼
)

2
‖𝜏𝑢𝑡 + 𝛼𝑢‖2                                    

+
𝛼

4𝜀
(∫ 𝑔(𝑠)

𝑡

0
𝑑𝑠) 𝑔 ∘ 𝛻𝑢.                                                                                   

 

We also have  

 
𝐻2 =  𝛼 ∫ (∫ 𝑔(𝑡 − 𝑠)

𝑡

0
(𝛻𝑢 − 𝛻𝑢(𝑠))𝑑𝑠)

2

𝛺
𝑑𝑥

≤  𝛼 (∫ 𝑔(𝑠)𝑑𝑠
𝑡

0
) 𝑔 ∘ 𝛻𝑢,                                

 

and for 0 < 𝜀 < 1, we have  

 

𝐻3 =  ∫ (∫ 𝑔(𝑡 − 𝑠)
𝑡

0
(𝛻𝑢 − 𝛻𝑢(𝑠))𝑑𝑠)

𝛺
𝑑𝑠 ∫ 𝑔(𝑡 − 𝑠)

𝑡

0
𝛻𝑢𝑡𝑑𝑠𝑑𝑥               

≤  𝜀 ∫ (∫ 𝑔(𝑡 − 𝑠)
𝑡

0
(𝛻𝑢 − 𝛻𝑢(𝑠)𝑑𝑠))

2

𝛺
𝑑𝑥 +

1

4𝜀
(∫ 𝑔(𝑠)

𝑡

0
𝑑𝑠)

2
‖𝛻𝑢𝑡‖2

≤  𝜀 (∫ 𝑔(𝑠)𝑑𝑠
𝑡

0
) 𝑔 ∘ 𝛻𝑢 +

1

4𝜀
(∫ 𝑔(𝑠)

𝑡

0
𝑑𝑠)

2
‖𝛻𝑢𝑡‖2,                                 

 

and  

 

𝐻4 = 𝛼𝜇 ∫ 𝑢𝑡𝛺
∫ 𝑔(𝑡 − 𝑠)

𝑡

0
(𝑢 − 𝑢(𝑠))𝑑𝑠𝑑𝑥                        

≤  
(𝛼𝜇)2

4𝜀
‖𝑢𝑡‖2 + 𝜀 ∫ (∫ 𝑔(𝑡 − 𝑠)

𝑡

0
(𝑢 − 𝑢(𝑠))𝑑𝑠)

2

𝛺
𝑑𝑥

≤  
(𝛼𝜇)2

4𝜀
‖𝑢𝑡‖2 + 𝜀𝑐𝑝 (∫ 𝑔(𝑠)

𝑡

0
𝑑𝑠) 𝑔 ∘ 𝛻𝑢.                     

 

By exploiting Young’s inequality and H3, we obtain, for all 0 < 𝜀 < 1,  

 

𝐻5 = − ∫ (𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡)
𝛺

∫ 𝑔′𝑡

0
(𝑡 − 𝑠)[𝜏𝑢𝑡 + 𝛼𝑢 − 𝛼𝑢(𝑠)]𝑑𝑠𝑑𝑥

= −𝛼 ∫ (𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡)
𝛺

∫ 𝑔′𝑡

0
(𝑡 − 𝑠)[𝑢 − 𝑢(𝑠)]𝑑𝑠𝑑𝑥              

− ∫ (𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡)
𝛺

∫ 𝑔′𝑡

0
(𝑡 − 𝑠)𝜏𝑢𝑡𝑑𝑠𝑑𝑥,                             

 

 

𝐻5 ≤ (1 + 𝛼)
𝜀

2
‖𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡‖2 +

(𝜏 ∫ 𝑔′𝑡
0 (𝑡−𝑠)𝑑𝑠))

2

2𝜀
‖𝑢𝑡‖2                       

+
𝛼

2𝜀
∫ (∫ −

𝑡

0
𝑔′(𝑡 − 𝑠)𝑑𝑠)

𝛺
(∫ −

𝑡

0
𝑔′(𝑡 − 𝑠)(𝑢 − 𝑢(𝑠))2𝑑𝑠) 𝑑𝑥

≤ 𝜀 (
𝛼+1

2
) ‖𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡‖2 +

(𝜏 ∫ 𝑔′𝑡
0 (𝑡−𝑠)𝑑𝑠)

2

2𝜀
‖𝑢𝑡‖2                            

+
𝑐𝑝𝛼

2𝜀
(∫ 𝑔′𝑡

0
(𝑡 − 𝑠)𝑑𝑠) 𝑔′ ∘ 𝛻𝑢,                                                       

 

and  

 
𝐻6 = −𝜏𝑔(0) ∫ (𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡)

𝛺
𝑢𝑡𝑑𝑥             

≤
𝜏𝑔(0)𝜀

2
‖𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡‖2 +

𝜏𝑔(0)

2𝜀
‖𝛻𝑢𝑡‖2.
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We now define the functional 𝐿 as follows:  

 𝐿(𝑡) = 𝑁𝐸(𝑡) + 𝑁1𝐹(𝑡) + 𝑁2𝐻(𝑡),  

where 𝑁, 𝑁1 and 𝑁2 are positive constants. 

By Lemma 3.1, Lemma 3.3 and Lemma 3.4, we have:  

 

𝐿′(𝑡) ≤ − [(𝑏𝛼 − 𝑐2𝜏 −
𝜏2𝑔(0)

2(𝛼−𝛿)
+

𝜏2𝑔(𝑡)

2
(

1

𝛼−𝛿
−

1

𝛼
)) 𝑁 − 𝑐01𝑁1

−𝑐1 (𝜀 +
1

𝜀
) 𝑁2] ‖𝛻𝑢𝑡‖2                                                       

− [
𝑔(𝑡)

2𝛼
𝑁 +

𝑙

4𝛼
𝑁1 − 𝑐1

′ 𝜀𝑁2] ‖𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢‖2                  

− [(∫ 𝑔(𝑠)𝑑𝑠
𝑡

0
− 𝜀𝑐0

′ ) 𝑁2 − 𝑁1] ‖𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡‖2           

− [𝛼𝜇𝑁 + 𝜏𝜇𝑁1 − (
1

𝜀
+ 1) 𝑐3𝑁2] ‖𝑢𝑡‖2                         

+ [
𝛿

2
𝑁 − 𝑐4𝑁2] 𝑔′ ∘ 𝛻𝑢                                                      

+ [
𝛼(𝑐2−𝑙)

𝑙
𝑁1 + 𝑐2 (𝜀 +

1

𝜀
+ 1) 𝑁2] 𝑔 ∘ 𝛻𝑢.                   

 

In this section, we need to choose our constants very carefully. First, we choose  

 𝜀 =
1

2𝑁2
. 

This choice gives:  

 

𝐿′(𝑡) ≤ − [(𝑏𝛼 − 𝑐2𝜏 −
𝜏2𝑔(0)

2(𝛼−𝛿)
+

𝜏2𝑔(𝑡)

2
(

1

𝛼−𝛿
−

1

𝛼
)) 𝑁 − 𝑐01𝑁1

−
𝑐1

2
− 2𝑐1𝑁2

2] ‖𝛻𝑢𝑡‖2                                                          

− [
𝑔(𝑡)

2𝛼
𝑁 +

𝑙

4𝛼
𝑁1 −

𝑐1
′

2
] 𝑃𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢𝑃2                          

− [∫ 𝑔(𝑠)𝑑𝑠𝑁2
𝑡

0
−

𝑐0
′

2
− 𝑁1] ‖𝜏0.2𝑐𝑚𝑢𝑡𝑡 + 𝛼𝑢𝑡‖2         

−[𝛼𝜇𝑁 + 𝜏𝜇𝑁1 − 𝑐3𝑁2 − 2𝑐3𝑁2
2]‖𝑢𝑡‖2                         

+ [
𝛿

2
𝑁 − 𝑐4𝑁2] 𝑔′ ∘ 𝛻𝑢                                                       

+ [
𝛼(𝑐2−𝑙)

𝑙
𝑁1 +

𝑐2

2
+ 𝑐2𝑁2 + 2𝑐2𝑁2

2] 𝑔 ∘ 𝛻𝑢.                 

 

Then we choose 𝑁1 large enough so that:  

 
𝑙

4𝛼
𝑁1 −

𝑐1
′

2
> 0. 

Then, we choose 𝑁2 large enough so that:  

 𝑐10 = (∫ 𝑔(𝑠)
𝑡

0
𝑑𝑠) 𝑁2 −

𝑐0
′

2
− 𝑁1 > 0. 

Now let’s choose 𝑁 large enough such that:  

 𝑐6 =
𝛿

2
𝑁 − 𝑐4𝑁2 > 0,  𝑘𝑐6 − 𝑐8 > 0, 𝑐5 > 0 and 𝑐7 > 0, 

where  

 𝑐5 = (𝑏𝛼 − 𝑐2𝜏 −
𝜏2𝑔(0)

2(𝛼−𝛿)
+

𝜏2𝑔(𝑡)

2
(

1

𝛼−𝛿
−

1

𝛼
)) 𝑁 − 𝑐01𝑁1 −

𝑐1

2
− 2𝑐1𝑁2

2, 



Braik and Bahri Mathematical Structures and Computational Modeling, 1, 2025 

 

98 

 𝑐7 = 𝛼𝜇𝑁 + 𝜏𝜇𝑁1 − 𝑐3(𝑁2 + 2𝑁2
2), 

 𝑐8 =
𝛼(𝑐2−𝑙)

𝑙
𝑁1 + 𝑐2 (

1

2
+ 𝑁2 + 2𝑁2

2), 

 𝑐9 =
𝑔(𝑡)

2𝛼
𝑁 +

𝑙

4𝛼
𝑁1 −

𝑐1
′

2
. 

This gives  

 

𝐿′(𝑡) =  −𝑐5𝑃𝛻𝑢𝑡𝑃2 − 𝑐9𝑃𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢𝑃2 − (𝑘𝑐6 − 𝑐8)𝑔 ∘ 𝛻𝑢 − 𝑐7𝑃𝑢𝑡𝑃2

  −𝑐10𝑃𝜏𝑢𝑡 + 𝛼𝑢𝑃2                                                                                         
≤  −𝐶𝐸(𝑡),   ∀𝑡 ≥ 0.                                                                                      

 

After that, we prove that 𝐿~𝐸. 

By the definition of the function 𝐿(𝑡), we have  

 

|𝐿(𝑡) − 𝑁𝐸(𝑡)| ≤ 𝑁1 ∫ |𝜏𝑢𝑡 + 𝛼𝑢|
𝛺

|𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡|𝑑𝑥                                             

+𝑁2 ∫ |𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡|
𝛺

∫ 𝑔(𝑡 − 𝑠)
𝑡

0
[|𝜏𝑢𝑡| + |𝛼𝑢 − 𝛼𝑢(𝑠)|]𝑑𝑠𝑑𝑥

≤ 𝑁1 [∫
1

2
|𝜏𝑢𝑡 + 𝛼𝑢|

𝛺
+

1

2
|𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡|𝑑𝑥]                                

+𝑁2 [∫ |𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡|
𝛺

(𝜏 ∫ 𝑔(𝑡 − 𝑠)
𝑡

0
) |𝑢𝑡|𝑑𝑥                               

+ ∫ |𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡|
𝛺

∫ 𝑔(𝑡 − 𝑠)
𝑡

0
|𝛻𝑢 − 𝛻𝑢(𝑠)|𝑑𝑠𝑑𝑥]                    

≤
𝑐𝑝𝑁1

2
‖𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢‖2 +

𝑁1

2
‖𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡‖2                           

+𝑁2 [∫
1

2
|𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡|2

𝛺
+

𝜏

2
(∫ 𝑔(𝑠)𝑑𝑠

𝑡

0
)

2
|𝑢𝑡|𝑑𝑥                   

+ ∫
1

2
|𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡|2

𝛺
+

1

2
(∫ 𝑔(𝑡 − 𝑠)

𝑡

0
|𝛻𝑢 − 𝛻𝑢(𝑠)|𝑑𝑠)

2

𝑑𝑥]

≤
𝑐𝑝𝑁1

2
‖𝜏𝛻𝑢𝑡 + 𝛼𝛻𝑢‖2 + (

𝑁1

2
+ 𝑁2) ‖𝜏𝑢𝑡𝑡 + 𝛼𝑢𝑡‖2           

+𝜏 (∫ 𝑔(𝑠)
𝑡

0
𝑑𝑠)

2 𝑁2

2
‖𝑢𝑡‖ +

𝑁2

2
(∫ 𝑔(𝑠)𝑑𝑠

𝑡

0
) 𝑔 ∘ 𝛻𝑢                

≤ 𝜔𝐸(𝑡).                                                                                          

 

So  

 (𝑁 − 𝜔)𝐸(𝑡) ≤ 𝐿(𝑡) ≤ (𝜔 + 𝑁)𝐸(𝑡). 

We can choose 𝑁 large enough such that (𝑁 − 𝜔) > 0. This shows that 𝐸~𝐿. 

It follows immediately that  

 𝐿′(𝑡) ≤ −𝜔2𝐿(𝑡)  where  𝜔2 =
𝐶

𝑁−𝜔
. 

By a simple integration on (0, 𝑡), we obtain  

 𝐸(𝑡) ≤
𝐿(0)

𝑁−𝜔
𝑒−𝜔2𝑡 . 

Which proves theorem 2.3. 
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