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1. Introduction

In this work, we are interested in the following abstract version of the Moore-Gibson-Thompson equation (MGTE)
with a memory term

TUgyy + AUy — c2Au — bAu, + pu,

+ fotg(t —s)Au(s)ds =0, (x,t) €2 XR,, (1.1)
u(x, t) =0, (x,t) € 30 X R,, '
u(x,0) = up(x), ur(x,0) =uy(x), ue(x,0) =uy(x), x € 1),

where b, a, u, and t are strictly positive constants. the convolution term fotg(t — s)Au(s)ds reflects the memory effect
of viscoelastic materials, and the "memory kernel" g(t): R, — R, is directly related to the energy decay.

The MGT equation is one of the nonlinear acoustic equations describing the propagation of acoustic waves in
gasses and liquids; see, for example, [3, 9, 16]. The equation (1.1) arises from the modeling of high-frequency
ultrasonic waves, taking into account heat flow and molecular relaxation times; please see [1, 6, 71.

According to revisited extended irreversible thermodynamics, heat flux relaxation leads to a third-order time
derivative, while molecular relaxation leads to nonlocal effects governed by memory terms.

Due to the wide range of applications, such as medical and industrial uses of high intensity ultrasound in
lithotripsy, thermotherapy, ultrasonic cleaning, etc., many studies have been conducted in this field of research.

In [9], Kaltenbacher, Lasiecka and Marchand studied the following linearized MGT equation

TUp + AU + c2Au + bAu, = 0.

2
For this equation, they showed that when the critical parametery = a — Cb—T > 0 is in the subcritical condition, the
problem is well-posed and its solution is exponentially stable. Whereas when y = 0, energy is conserved.

Since its appearance, there has been a growing interest in studying the long-time asymptotic behaviors of the
MGT equation; please see [3, 5, 14]. Caixeta, Lasiecka and Cavalcanti [3] considered the following nonlinear equation

TUgee + QU + AU + bAU, = f (U, Up, Ugy),

and they obtained that the problem is locally well-posed with an arbitrary size of the initial data and the existence
of a global and finite-dimensional attractor; see [5, 8].

Now, we focus on stabilizing the MGT equation with memory, which has received considerable attention recently.
For example, Lasiecka and Wang [11] studied the following equation:

TUy + AUy + c2Au + bAu, + fotg(t —5)Aw(s)ds =0, (1.2)

For the above equation, they studied the effect of memory described by three types on energy decay rates when
a— C%T > 0. Then, in the case a — % = 0, they showed that the memory term provided an exponential energy decay.

Furthermore, Lasiecka and Wang [10] established the general decay result of the (1.2) equation when w = u and
g satisfy g(t) < —H(g(t).

In [6], Filippo et al. studied the critical case af =y of the (1.2) equation when w = u, T = 1, ¢ =y, and g satisfy
g) < —=8g(t) and proved an exponential decay of the energy if and only if 4 is a bounded operator.
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In the same case above, W. Liu et al. in [12] studied the equation (1.2) and obtained a general decay result for a
class of relaxation functions that satisfies g'(t) < —&(t)H(g(t)) such that H is increasing and a convex function near
the origin, and &(t) is a non-increasing function.

The aim of this paper is to study the asymptotic behavior of the solutions of the MGT equation with memory
(1.1). For this, we use the idea developed by Wenjun Liu et al. in [12], taking into account the nature of the MGT
equation, and we prove new general decay results for the subcritical case (Ba — 7c? > 0). Our results considerably
improve and generalize the previously related findings of exponential and general decay under the subcritical
conditions described in the literature. The proof is based on the perturbed energy method and some properties of
convex functions, with arguments from [10, 15] and [18]. The rest of this work is written as follows. In Section 2, we
present some assumptions and state the general decay result. In Section 3, we state and prove some technical
lemmas that are necessary for the remainder of this document. In Section 4, we prove our main result.

2. Preliminaries and Main Result
We consider the following hypotheses and state our main result.

First, we consider the following hypotheses as in [10] and [11] for H1, H3, and [2] for H2, H4 , with a small
modification:

H1: ba — tc? > 0.
H2: The function g: R, — R, is a non-increasing, differentiable function such that
0< g(0) < a(ba —1c?), c*-— f;g(s)ds =1>0.
H3: There exists a positive constant c, such that for all w in the Hilbert space H,
Iwll < c,lIVwll.
H4: There exists a constant K > 0 such that
%g(r) < —-Kg(r), vr>0.
The following lemma plays a very important role in the proofs of the lemmas and our main result.
Lemma 2.1 [10] Lemma 2.10
If 0 < g(0) < a(ba — c21) then there exists ¢ > 0 such that
9(0) < (F)(ba = ¢*1),
or equivalently

2. g(o)?
ba —c°T 2 (o) > 0. 2.1

We now announce, without proof, the following standard existence and regularity result.

Proposition 2.2 [11]

Under the hypotheses H1- H3, the problem (1.1) admits a unique weak solution u verifying
u € CY(Ry; HY) N C%(R,; H).

Next, we introduce the energy function associated with our problem, which is defined by:
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2_
E(t):= ill‘rutt + au.|? + Cz—z(t) ItVu, + aVul|? + %Puth
t
+t [, [, gt — 9)[Vu — Vu(s)] dsVu.dx + %g o Vu (2.2)

2 _ 2
+ (2 + w) P|7utP2,
2 2a

where G(t) = fotg(s)ds and for all w € 12,.(R,; L*(2)),

(g ow)(D):= [, [ gt — s)(w(t) — w(s))? dsdx.
We are now in a position to state the general decay result for problem (1.1).

Theorem 2.3 Let (uy, uy,u,) € H} X H} X H. Suppose that H1-H3 hold . Then there exist positive constants w, and
w5, such that, along the solution of problem (1.1), the energy function satisfies

E(t) < we” @2t forall t=> 0.

3. Important Lemmas
In this section, we announce and present some lemmas necessary to establish our main result.

Lemma 3.1 Let (u,u,,u,) be a solution of (1.1). Suppose that H1 and H2 are verified. Then the function E(t)
satisfies

a 2. _ %g(0) 2(9@® _ _9® 2
th(t) < [c T ba+2(a_8)+‘r (Za 2(a_5))] PVu,P

3.1
—auPu,P? + gg’ o Vu — % ltVu, + aVul|?.

Proof : We multiply (1.1) by (tu,; + au,) then we integrate by part on 2, we obtain

a1 2 2 bt 2 ac? 2 2
pm [2 Ptuy + auPe + tc fn VuVu,dx + 2 PVu,P* + 5 PVuP® + urtPu,P ] (32)
+(ba — tc*)PVu.P* + paPu,P? — [ V(tuy + au,) fotg(t — 5) Vu(s)dsdx = 0.

Let us now move on to estimating the last integral of the above equality

Iy = — [, V(tue + auy) fotg(t — s)Vu(s)dsdx
=/, fotg(t —5) (Vu — Vu(s))ds(tVu, + aVu,)dx
-/, fotg(t —5) Tu(tVuy + aVu,)dsdx

Iy =1/, fotg(f =) % [(Vu — Vu(s))Vu,]dsdx
a t d
=5 0o Jy 9t = ) 5 (Vu)?dsdx
—tf, fotg(t —5) % (Vu.Vu,)dsdx
+E 1,0 gt = ) (7u — Vu(s))?dsdx
= % [1- fﬂ fotg(t —5) [Vu — Vu(s)]dsVu,dx + %g o Vu 53
—%(t)PVuP2 -1/, fotg(t —5) [VuVut]dsdx]
+E 0,08 ' (6~ ) (Tu)?dsdx
~ &, 0 gt~ 5) (Pu — Pu(s))?dsdx
+t [, fotg'(t —5) Vu. Vu,dsdx
-T fn fotg'(t —5) (Vu — Vu(s))ds. Vu,dx.
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Then, by combining the definition of the function E(t), (3.2) and (3.3), we can obtain

da 2 ’
2E® = (c?r— ba + 25 17w )l? — apllucli? + 2 g' o Vu 4
t t , '
—%PTVM,: +aVuP? +1 [, [ g'(t —s) [Vu — Vu(s)]dsVu,dx.
Then we have
t
tf,J, 9'(t —s) [Vu - Vu(s)]dsVu,dx
t
< tf, [[V-9' =) vu—vu()| | x [{—g'(t — )| Vu,| |dsdx
1
t , 2
< 7|/, (fo —g'(t —5)| Vu,| 2ds)2 (3.5)
1
X (fot —g'(t — )| Vu — Vu(s)| 2d5)2 dx]
-5, t ,
<t [—az—rg oVu— 2(;_5) J,g't—9) ds|||7ut||2].
Replacing (3.5) in (3.4), we find
a 2, 9O | 2(9®) _ _9® 2
th(t) = [C T—ba+ 2(a-98) Tt ( 2a Z(a—(S))] Hvut” (3 6)
—au|lu.l|? + gg’ o Vu — % ltVu, + aVul|?.
By Lemma 2.1 and H1-H2, we have reached the end of the proof.
For the rest, we state the following lemma:
Lemma 3.2 Under the hypotheses H1-H3, the function E satisfies
2_ 2
ratee + augl|? + =22 o7, + aVull? + pell |12 + =227, )12
< 2E(t) 57

< 2 ﬂ V4 Tull? 2
< lltug + aull® + P ITVu, + aVull® + utllu.ll

— 2_
+2ag o Vu + “EEZE O gy 2.

Proof : By definition of the energy function E, we have:

1 2_G(t
E@) = 2 [l + auell? + 2 |lrug + aull? + prllu |?
T(ba—t(c?-2G(t))) 2
+ag o Vu+—a 7wl

+21 [, fotg(t —5) [Vu— Vu(s)]dsVutdx] .

First, we estimate the last term of the above equality

L, = 2t fotg(t —5) |Vu — Vu(s)|ds|Vu,|dx
< 21 fotg(t —5) ([, Ivu — vu(s)|? dx)%(anutl2 dx)%ds
< fot(t—s)g[alqu— vu(s)|I? +§||Vut||2] ds
< agoVu+@|||7ut||2.

a

This implies that
2 2
—agoVu —%(t)lqutll2 <L <agoVu +%(t)||l7ut||2.
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The proof is finished. Now we can define the functional F(t) as follows:
F(t) = [,(tue + auy) (tue + aw)dx + %fﬂ u? dx.
Lemma 3.3 Suppose that H1 -H3 are verified. Then, the functional F(t) satisfies the estimate
F'(t)< PtVuy +aVuP? — iPTVut + aVuP? — utPu,P?

20.2_1\2 2\2 2_
+(M+%(b—%) )PVutP2+@go|7u.

la

(3.8)

Proof : By differentiating the function F(t) with respect to ¢, by exploiting the equation (1.1) and by integrating
by parts, we obtain

F'@) = ltVug + aVull® + [, (tuee + au) (tue + aw)dx + pa [, uoudx

= IR [czAu + bAu, — pu, — fotg(t —5) Au(s)ds] (tu; + au)dx

2
+ua fﬂ wudx + [[tVuy + aVugl| (3.9)

Tc?

2
—% ltVu, + aVul|? + ( - b) J, Vu (xVu, + aVu)dx

«
—utPuP* + | fotg(t —5) Vu(s)ds(tVu, + aVu)dx
+HtVue + aVu,|?,

we note that
I, = (% - b) J, Vu(tVu, + aVu) dx,
and
L=/, fotg(t — 5) Vu(s)ds(tVu, + aVu)dx.
Using Young's inequality, Lemma 2.1 and the fact that ba — ¢ > 0, we have

zc?

2
L <%(b-%) PYuP? + = Priu, + aVuP?. (3.10)

@
and

I, = /, fotg(t — 5) [Vu(s) — Vulds(tVu, + aVu)dx
+ ? [PTVu, + aVuP? — [ tVu,(1Vu, + aVu) dx]

2
< “Ogovu+EOpryy, + avup? + E2 pry,p2.

Substituting I; and I, into (3.9), we obtain the following:
F'(t)< PtVuy + aVu,P? — ﬁPTVut + aVuP? — utPu,P?
+ (# +2(p- %)2) Prup? + S0 g oy,
Lemma 3.4 We assume that H1 - H3 are satisfied. Then, the functional H(t) is defined by:

H(t) = — [, (tug + au,) fotg(t —5) [tu; + au — au(s)]dsdx,

meets the estimate
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H(@®) < - (fotg(s)ds - ec{J) ltuee + aull? + eci|ltVu, + aVul|?
+c1(e +§)|I|7ut||2+c2(e+§+ l)gOVu (3.11)

1 1 ,
ey (34 1) el = Zeag’ o 7

where
cp =c?— fotg(s)ds,
2
ch = —ng(o) +a+1c=2(a+1) (%’) ,
, (b 21 t 2 t
c; = max {cl (C—:— ‘L') ,Z(‘L’ Js g(s)ds) }, ¢, = (1+¢p) J, 9(s)ds,
¢ @w?+2(c fL o' )ds)”
c3 = maxjut [ g(s)ds, 40 ,
and

_ 90-g®

C4 2

aCpy.

Proof : By differentiating the function H with respect to ¢t and using the equation (1.1), then, by integrating by
parts, we obtain:
H () = J [=bdu, — c?Au + puy] fotg(t —5) [tu; + au — au(s)]dsdx
+/, [fotg(t —5) Au(s)ds] fotg(t —5) [tu, + au — au(s)]dsdx
— [, (v + auy) fotg’(t —5) [tu; + au — au(s)]dsdx
- (fotg(s)ds) lltuee + auell* — tg(0) [, (v + auu dx
= /, (qut + (cz - fotg(s) ds) Vu)
X fotg(t —5) [tVu; + aVu — aVu(s)]dsdx
+a [, (f; 9(t —5) (7u— |7u(s))ds)2 dx
+ 1, (fy 9(t = ) (Fu = Vu(s))ds) [; g(t - 5) Vuedsdx
+u [, ue fotg(t —s) tupdsdx + au [, u, fotg(t —5) (u —u(s))dsdx
- fotg(s)ds lltuee + aull* — tg(0) [, (ruee + au,) uedx
— [, (v + auy) fotg’ (t = s)[tu; + au — au(s)]dsdx.

Now, we estimate the terms H; — Hg on the right side of the above equality. Let's calculate the first one, which
we denote by H;

H = Tf, (qut + (c2 - fotg(s) ds) Vu) (fotg(s) ds) Vu.dx
+a |, (qut + (cz - fotg(s) ds) Vu) fotg(t —5) [Vu — Vu(s)]dsdx.

Using Young's inequality, we obtain, for0 < e < 1,
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B
IA

e, [qut + (cz - fotg(s) ds) Vu]2 dx + i(‘r fotg(s) ds)2 7w )?
+ea [, [qut + (c2 - fotg(s) ds) |7u]2 dx

+ 20, (5 9 = ) [7u = Pu(s)lds) dx,

2_t 2 2
gla+1) [, <C o g(s)ds) [( pe Vu, + aVu] dx

H1 S a cz—f;g(s)ds)
1 t 2 t 2
+E(‘L’ N g(s)ds) 17wl + %fn (fo gt —s)[Vu— Vu(s)]ds) dx
1 2 %)? 2
< o (e+2) I7ull? + 2e(a + 1) () llzu, + aull

+£(f0tg(s) ds)g o Vu.

We also have

al, (fotg(t —5)(Vu — |7u(s))ds)2 dx
a (fotg(s)ds)g o Vu,

F
I

IA

and for 0 < € < 1, we have

Hy = [,(J39(t—s) (7u—vu(s)ds)ds [} g(t — 5) Vu,dsdx
< ef,(Jgtt—s) Ou—vu(s)ds)) dx +L ([ g(s)ds) I7ul?
< ([ g@ads)gevu+2([Fg(srds) ITul?
and
Hy = aufu [ g(t—s)—u(s))dsdx

IA

% ”utllz + & f_Q (f(:g(t - S) (u _ u(s))ds)z dx

2 t
< % lluell® + ec, (fo g(s) ds)g o Vu.
By exploiting Young's inequality and H3, we obtain, forall 0 < e < 1,

Hs = — [ (tue +au,) fotg’ (t — s)[tu; + au — au(s)]dsdx
—a [, (tug + auy) fotg’ (t = s)[u — u(s)]dsdx
— [, (tuge + auy) fotg' (t — s)tu,dsdx,

(r fotg’(t—s)ds))2 2
el

Ho < (1+ a)zllrutt + au||? + —

2, (1~ '€= ds) (S ' (¢ = )~ u())ds) dx

(r f(fg'(l:—s)ds)2
2&

IA

a+1
£ () v + w1 + e 12

cpa (ot , ,
+%(f0 g (t— s)ds)g o u,
and
He = -19(0) f_Q(Tuff + aug) ugdx

79(0)e
2

IA

7g9(0)
lTue + autHZ + Y IIVutIIZ-
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We now define the functional L as follows:

L(t) = NE(t) + NyF(t) + NpH(t),

where N,N1 and N2 are positive constants.

By Lemma 3.1, Lemma 3.3 and Lemma 3.4, we have:

res - [<ba —c?r - % + @(ﬁ - i))N —co1 Ny
—c; (s + i) Nz] 17 |I?
_ [%N + ﬁNl - C{ENZ] ItVu, + aVul|?
—|(f; g(s)ds — ech) Ny = Ny | llzuye + e |12
— [N + TuNy = (2 + 1) c3Ny ]l |1
+ EN - C4N2] g oVu
+[@N1 +c (5+§+ 1)N2]g°vu'

In this section, we need to choose our constants very carefully. First, we choose

This choice gives:

' _ 2, _T9@ g1 L _
L'(t) < [(ba T = s +— (a—6 a))N co1 N1
— 2 — 20, N3] 17, |12
- [@N +LN, - C—l] PtVu, + aVuP?
2a 4a 2

t !
- [fo g(s)dsN, — %" - Nl] I70.2cmuy, + au,l|?
—[auN + tuN; — csN, — 2C3N22]”ut”2

[ ’

2_
+ [a(cl ) N; + Cz—z + N, + ZCZNZZ] govu.
Then we choose N; large enough so that:
Ly _a
A > 0.

Then, we choose N, large enough so that:

t i
ClO = (fo g(S) dS) Nz - C2_0 - N1 > 0.
Now let's choose N large enough such that:

8
c6=;N—c4N2>O, kce —cg >0, cs >0 and ¢, >0,

where

- S (O] @(L_l _ _a_ 2
cs—<ba c°t 2(a_(s)+ > o a))N €91 N1 S 2¢1N5,

97

Braik and Bahri



Braik and Bahri Mathematical Structures and Computational Modeling, 1, 2025

C7 = aMN + TH'Nl - C3(N2 + 2N22),

2_
Cg ZMNl-FCZ (§+N2 +2N22),

IOy Ly
Co = N+4MN1 x
This gives
L'(t)=  —csPVu,P? — coPtVu, + aVuP? — (kcg — cg)g ° Vu — ¢, Pu,P?
—c10PTU; + QUP?
< —CE(t), Vt=0.

After that, we prove that L~E.
By the definition of the function L(t), we have

|L(t) — NE(t)|] < Ny [ ltue + aul |tuy, + au,|dx
t
+N, [ltue + augl [; g(t = s) [ltue] + lau — au(s)|]dsdx

IA

N, [fﬂglrut + aul| + % lTu,, + autldx]
+N, [fnh'utt + augl (T fotg(t - 5)) luldx
+ [ It + aw,| fotg(t —5)|Vu — Vu(s)ldsdx]

cpNy
2

2
+N, [f!)%hucc + au|* + g(fotg(s)ds) lucldx

IA

ltVu, + aVul|? + % l[Tuee + au,|?

2
+fn§|‘rutt + au,|? +§(fotg(t —s)|Vu— Vu(s)lds) dx]
Cle
2

e (JE gty ds) Lllucl +22 ([ g(s)ds) g o u
< wE (t).

IA

lzVu, + aVul|? + (% + Nz) [lTuee + augl)?

So
(N — w)E(t) < L(t) < (w + N)E().
We can choose N large enough such that (N — w) > 0. This shows that E~L.

It follows immediately that
L'(t) < —w,L(t) where w, = ﬁ
By a simple integration on (0, t), we obtain
E(t) < 12 ez,
Which proves theorem 2.3.
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