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ABSTRACT 

This work focuses on the analysis of observability and exact controllability for 

a locally transmitted system, in which an internal control is applied to the 

second wave problem, which is strongly coupled. First, we establish an 

observability inequality by employing a result due to A. Haraux [3]. Then, using 

the Hilbert Uniqueness Method (HUM in short) developed by J. L. Lions [9], we 

demonstrate that the system is exactly controllable.  
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1. Introduction 

The primary objective of the controllability problem is to determine whether it is possible to steer the solution 

of a system to a prescribed final state through the application of an appropriate control. This question arises 

naturally in the context of oscillatory systems such as wave or beam equations where the aim is to suppress 

undesired vibrations by acting either within a subregion of the domain (internal control) or along its boundary 

(boundary control). 

In control theory, it is standard to approach these problems in a dual manner. The dual notion of controllability 

is called observability: it is the ability to measure or observe the entire dynamics of the system through appropriate 

sensors, using partial measurements taken from a region suited for control. Problems related to the control and 

observation of wave equations have attracted considerable attention in recent years. In [6] and [7], Alabau studied 

an abstract system of two second-order evolution equations that are weakly coupled. By establishing an indirect 

observability inequality and employing the Hilbert Uniqueness Method, she proved that the system is exactly 

controllable for sufficiently small coupling parameters using a single boundary control. In [2], Ben Aissa established 

the equivalence between weak controllability and the weak observability inequality for second-order evolution 

systems. Subsequently, Wehbe and Youssef in [5] examined the exact controllability of weakly coupled wave 

equations with a localized internal control acting on only one component of the system. In [10], S.Gerbi et al. 

investigated the exact controllability and stabilization of a system of two wave equations coupled through velocity 

terms, with a local internal control applied to a single equation. They distinguished two cases. In the first case, when 

the wave propagation speeds are equal, they applied a frequency domain method combined with the multiplier 

technique to prove that the system is exponentially stable, provided the coupling region is included in the damping 

region and satisfies the Geometric Control Condition (GCC). Relying on a result by Haraux [3], they established a key 

indirect observability inequality, which, via the HUM, led to the exact controllability of the full system with a locally 

distributed control. In the second case, when the wave speeds differ, they established an exponential decay in a 

weaker energy space under appropriate geometric conditions. This also allowed them to deduce the exact 

controllability of the system by invoking results from [3]. More recently, Akil and Hajjej [8] investigated the 

exponential stability of second-order coupled wave equations involving the Laplacian operator and subject to a 

locally acting internal viscous damping. They proved exponential stability under the Piecewise Multiplier Geometric 

Condition (PMGC) on the damping region, without any restriction on the wave propagation speeds. Subsequently, 

they also established the exact controllability of the system using the Hilbert Uniqueness Method. 

To begin, let us consider the following transmission problems, which involves two wave systems:  

 

{
 

 
𝑢𝑡𝑡 − 𝑎1𝑢𝑥𝑥 + 𝑐1(𝑥)𝑦 = 0,                        (𝑥, 𝑡) ∈  (0, 𝐿0) × R+

∗ ,

𝑦𝑡𝑡 − 𝑦𝑥𝑥 + 𝑐1(𝑥)𝑢 = 0,                             (𝑥, 𝑡) ∈  (0, 𝐿0) × R+
∗ ,

𝜙𝑡𝑡 − 𝑎2𝜙𝑥𝑥 + 𝑑2(𝑥)𝜙𝑡 + 𝑐2(𝑥)𝜓𝑡 = 0, (𝑥, 𝑡) ∈  (𝐿0, 𝐿) × R+
∗ ,

𝜓𝑡𝑡 − 𝜓𝑥𝑥 − 𝑐2(𝑥)𝜙𝑡 = 0,                         (𝑥, 𝑡) ∈  (𝐿0, 𝐿) × R+
∗ ,

 (1.1) 

with fully Dirichlet boundary conditions,  

 𝑢(0, 𝑡) = 𝑦(0, 𝑡) = 𝜙(𝐿, 𝑡) = 𝜓(𝐿, 𝑡) = 0,     𝑡 ∈ R+
∗ , (1.2) 

and with the following initial data  

 (𝑢, 𝑦, 𝜙, 𝜓, 𝑢𝑡 , 𝑦𝑡 , 𝜙𝑡 , 𝜓𝑡)(𝑥, 0) = (𝑢0, 𝑦0 , 𝜙0, 𝜓0, 𝑢1, 𝑦1, 𝜙1, 𝜓1). (1.3) 

and the following transmission conditions,  

 {
𝑢(𝐿0, 𝑡) = 𝜙(𝐿0, 𝑡),  𝑦(𝐿0, 𝑡) = 𝜓(𝐿0, 𝑡),                𝑡 ∈  R+

∗ ,

𝑎1𝑢𝑥(𝐿0, 𝑡) = 𝑎2𝜙𝑥(𝐿0, 𝑡), 𝑦𝑥(𝐿0, 𝑡) = 𝜓𝑥(𝐿0, 𝑡), 𝑡 ∈  R+
∗ ,

 (1.4) 

where  
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 𝑐1(𝑥) = {
𝑐1 if  𝑥 ∈ (𝛼1, 𝛼3)

0 otherwise
          𝑑2(𝑥) = {

𝑑2 if  𝑥 ∈ (𝛽2, 𝛽4)

0 otherwise,
 (1.5) 

 𝑐2(𝑥) = {
𝑐2 if  𝑥 ∈ (𝛽1, 𝛽3)

0 otherwise
 (1.6) 

and 𝑎1, 𝑎2, 𝑑2 are strictly positives constants and 𝑐1, 𝑐2 ∈ 𝑅
∗ (see 1). 

Let (𝑢, 𝑢𝑡 , 𝑦, 𝑦𝑡 , 𝜙, 𝜙𝑡 , 𝜓, 𝜓𝑡) be a regular solution of system (1.1)-(1.4). The energy is given by  

 𝐸(𝑡) =
1

2
∫ (|𝑢𝑡|

2 + 𝑎1|𝑢𝑥|
2 + |𝑦𝑡|

2 + |𝑦𝑥|
2 + 2ℜ(𝑐1(𝑥)𝑢𝑦))

𝐿0
0

𝑑𝑥 (1.7) 

 +
1

2
∫ (|𝜙𝑡|

2 + 𝑎2|𝜙𝑥|
2 + |𝜓𝑡|

2 + |𝜓𝑥|
2)

𝐿

𝐿0
𝑑𝑥. 

A straightforward computation gives  

 
𝑑

𝑑𝑡
𝐸(𝑡) = −∫ 𝑑2(𝑥)|𝜙𝑡|

2𝐿

𝐿0
𝑑𝑥 ≤ 0. (1.8) 

Thus, the system (1.1)-(1.4) is dissipative in the sense that its energy is a non increasing function with respect to 

the time variable 𝑡. Now, we introduce the following Hilbert spaces  

 𝐻𝐿
1(𝑎, 𝑏) = {𝑓 ∈ 𝐻1(𝑎, 𝑏);  𝑓(𝑎) = 0} 

and  

 𝐻𝑅
1(𝑎, 𝑏) = {𝑓 ∈ 𝐻1(𝑎, 𝑏);  𝑓(𝑏) = 0}, 

for any real numbers 𝑎, 𝑏 such that 𝑎 < 𝑏. Then, the energy space 𝐻 is defined by  

 H = {
[𝐻𝐿

1(0, 𝐿0) × 𝐿
2(0, 𝐿0)]

2 × [𝐻𝑅
1(𝐿0, 𝐿) × 𝐿

2(𝐿0, 𝐿)]
2

suchthat    𝑢(𝐿0) = 𝜙(𝐿0)    and    𝑦(𝐿0) = 𝜓(𝐿0)
}, 

equipped with the following norm  

 ‖𝑈‖H
2 = 𝑎1‖𝑢𝑥‖𝐿2(0,𝐿0)

2 + ‖𝑣‖𝐿2(0,𝐿0)
2 + ‖𝑦𝑥‖𝐿2(0,𝐿0)

2 + ‖𝑧‖𝐿2(0,𝐿0)
2  

 +2ℜ∫ 𝑐1(𝑥)𝑢𝑦𝑑𝑥
𝐿0
0

+ 𝑎2‖𝜙𝑥‖𝐿2(𝐿0,𝐿)
2 + ‖𝜂‖𝐿2(𝐿0,𝐿)

2  

 +‖𝜓𝑥‖𝐿2(𝐿0,𝐿)
2 + ‖𝜉‖𝐿2(𝐿0,𝐿)

2 , 

for all 𝑈 = (𝑢, 𝑣, 𝑦, 𝑧, 𝜙, 𝜂, 𝜓, 𝜉)𝑇 ∈ H. 

 

Figure 1: Geometric description of the functions 𝑐1, 𝑐2 and 𝑑2. 
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By applying the Lumer-Phillips theorem (see [4]), the authors in [1] establish the well-posedness of the system 

(1.1)-(1.4). Then, using a frequency domain approach based on multiplier techniques, they proved the exponential 

stability of the problem in the case where the damping region intersects the coupling region, and the waves in the 

second coupled equation propagate at the same speed, i.e., 𝑎2 = 1, (see Theorem 4.1 in [1]). 

Our purpose in this paper is to study the internal exact controllability of system (1.9)-(1.10). To our knowledge, 

no prior research has addressed the observability and exact controllability of this problem. The present work aims 

to bridge this gap by examining the following coupled system:  

 

{
 
 
 

 
 
 

𝑢𝑡𝑡 − 𝑎1𝑢𝑥𝑥 + 𝑐1(𝑥)𝑦 = 0,                          (𝑥, 𝑡) ∈  (0, 𝐿0) × R+
∗ ,

𝑦𝑡𝑡 − 𝑦𝑥𝑥 + 𝑐1(𝑥)𝑢 = 0,                                (𝑥, 𝑡) ∈  (0, 𝐿0) × R+
∗ ,

𝜙𝑡𝑡 − 𝑎2𝜙𝑥𝑥 + 𝑐2(𝑥)𝜓𝑡 = 𝑑2(𝑥)𝑣,             (𝑥, 𝑡) ∈  (𝐿0, 𝐿) × R+
∗ ,

𝜓𝑡𝑡 − 𝜓𝑥𝑥 − 𝑐2(𝑥)𝜙𝑡 = 0,                              (𝑥, 𝑡) ∈  (𝐿0, 𝐿) × R+
∗ ,

𝑢(0, 𝑡) = 𝑦(0, 𝑡) = 𝜙(𝐿, 𝑡) = 𝜓(𝐿, 𝑡) = 0, 𝑡 ∈  R+
∗ ,

(𝑢, 𝑦, 𝑢𝑡 , 𝑦𝑡)(𝑥, 0) = (𝑢0, 𝑦0, 𝑢1, 𝑦1),            𝑥 ∈  (0, 𝐿0),

(𝜙, 𝜓, 𝜙𝑡 , 𝜓𝑡)(𝑥, 0) = (𝜙0, 𝜓0, 𝜙1, 𝜓1),     𝑥 ∈  (𝐿0, 𝐿).

 (1.9) 

with the following transmission conditions,  

 {
𝑢(𝐿0, 𝑡) = 𝜙(𝐿0, 𝑡),  𝑦(𝐿0, 𝑡) = 𝜓(𝐿0, 𝑡),                𝑡 ∈  R+

∗ ,

𝑎1𝑢𝑥(𝐿0, 𝑡) = 𝑎2𝜙𝑥(𝐿0, 𝑡), 𝑦𝑥(𝐿0, 𝑡) = 𝜓𝑥(𝐿0, 𝑡), 𝑡 ∈  R+
∗ ,

 (1.10) 

where 𝑣 is an appropriate control. 

The idea is to use a result of A. Haraux in [3] for which the observability of the homogeneous system associated 

to (1.9)-(1.10) is equivalent to the exponential stability of the system (1.1)-(1.4). Next,by the Hilbert Uniqueness 

Method introduced by J. L. Lions in [9], we derive the exact controllability of system (1.9)-(1.10). 

2. Observability and Exact Controllability 

Consider the following homogeneous system related to (1.9)-(1.10) by  

 

{
 
 
 

 
 
 

𝑝𝑡𝑡 − 𝑎1𝑝𝑥𝑥 + 𝑐1(𝑥)𝑞 = 0,                          (𝑥, 𝑡) ∈  (0, 𝐿0) × R+
∗ ,

𝑞𝑡𝑡 − 𝑞𝑥𝑥 + 𝑐1(𝑥)𝑝 = 0,                               (𝑥, 𝑡) ∈  (0, 𝐿0) × R+
∗ ,

𝜂𝑡𝑡 − 𝑎2𝜂𝑥𝑥 + 𝑐2(𝑥)𝜉𝑡 = 0,                         (𝑥, 𝑡) ∈  (𝐿0, 𝐿) × R+
∗ ,

𝜉𝑡𝑡 − 𝜉𝑥𝑥 − 𝑐2(𝑥)𝜂𝑡 = 0,                              (𝑥, 𝑡) ∈  (𝐿0, 𝐿) × R+
∗ ,

𝑝(0, 𝑡) = 𝑞(0, 𝑡) = 𝜂(𝐿, 𝑡) = 𝜉(𝐿, 𝑡) = 0, 𝑡 ∈  R+
∗ ,

(𝑝, 𝑞, 𝑝𝑡 , 𝑞𝑡)(𝑥, 0) = (𝑝0, 𝑞0, 𝑝1, 𝑞1),           𝑥 ∈  (0, 𝐿0),

(𝜂, 𝜉, 𝜂𝑡 , 𝜉𝑡)(𝑥, 0) = (𝜂0, 𝜉0, 𝜂1, 𝜉1),           𝑥 ∈  (𝐿0, 𝐿).

 (2.1) 

with the transmission conditions,  

 {
𝑝(𝐿0, 𝑡) = 𝜂(𝐿0, 𝑡),  𝑞(𝐿0, 𝑡) = 𝜉(𝐿0, 𝑡),                𝑡 ∈  R+

∗ ,

𝑎1𝑝𝑥(𝐿0, 𝑡) = 𝑎2𝜂𝑥(𝐿0, 𝑡), 𝑞𝑥(𝐿0, 𝑡) = 𝜉𝑥(𝐿0, 𝑡), 𝑡 ∈  R+
∗ .

 (2.2) 

Let 𝑉 = (𝑝, 𝑝𝑡 , 𝑞, 𝑞𝑡 , 𝜂, 𝜂𝑡 , 𝜉, 𝜉𝑡) be a regular solution of system (2.1)-(2.2), its associated total energy is given by  

 𝐸(𝑡) =
1

2
∫ (|𝑝𝑡|

2 + 𝑎1|𝑝𝑥|
2 + |𝑞𝑡|

2 + |𝑞𝑥|
2 + 2ℜ(𝑐1(𝑥)𝑝𝑞))

𝐿0
0

𝑑𝑥 (2.3) 

 +
1

2
∫ (|𝜂𝑡|

2 + 𝑎2|𝜂𝑥|
2 + |𝜉𝑡|

2 + |𝜉𝑥|
2)

𝐿

𝐿0
𝑑𝑥. 

A straightforward computation gives  

 
𝑑

𝑑𝑡
𝐸(𝑡) = 0. (2.4) 
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Thus, system (2.1)-(2.2) is conservative in the sense that its energy 𝐸(𝑡) is constant. It is also wellposed and admits 

a unique solution (see [1]) in the energy space 𝐻. 

We begin by proving the following theorem, which provides both the direct and inverse inequalities 

Theorem 2.1 Assume that 𝑎2 = 1. Then there exists a time 𝑇0 > 0 such that for all 𝑇 > 𝑇0, there exist two constants 

𝐶1, 𝐶2 > 0 such that the solution of the homogeneous system (2.1)-(2.2) satisfies the following inequalities  

 𝐶1‖𝑉0‖H
2 ≤ ∫ ∫ 𝑑2

𝐿

𝐿0

𝑇

0
(𝑥)|𝜂𝑡|

2𝑑𝑥𝑑𝑡 ≤ 𝐶2‖𝑉0‖H
2 , (2.5) 

for all 𝑉0 = (𝑝0, 𝑝1, 𝑞0, 𝑞1, 𝜂0, 𝜂1, 𝜉0, 𝜉1) ∈ H.  

Proof. Using Cauchy-Schwarz inequality, the definition of the total energy and the fact that the system (2.1)-(2.2) 

is conservative, we obtain the direct inequality. While the proof of the inverse inequality is a direct consequence of 

Proposition 2 of A. Haraux in [3] for which the exponentially stability of the system (1.1)-(1.4) is equivalent to the 

observability inequality (2.5).  

Now, we are ready to examine the exact controllability of the control problem (1.9)-(1.10) by using the HUM. Let 

𝑣0 ∈ 𝐿
2(0, 𝑇; 𝐿2(𝛽2, 𝛽4)), we define the control function  

 𝑣(𝑡) = −
𝑑

𝑑𝑡
𝑣0(𝑡) ∈ [𝐻𝑅

1(0, 𝑇; 𝐿2(𝛽2, 𝛽4))], (2.6) 

where the derivative 
𝑑

𝑑𝑡
 is taken in the sense of the duality 𝐻𝑅

1(0, 𝑇; 𝐿2(𝛽2, 𝛽4)) and its dual [𝐻𝑅
1(0, 𝑇; 𝐿2(𝛽2, 𝛽4))], that is,  

 −∫
𝑑

𝑑𝑡

𝑇

0
𝑣0(𝑡)𝜇(𝑡)𝑑𝑡 = ∫ 𝑣0(𝑡)

𝑑

𝑑𝑡

𝑇

0
𝜇(𝑡)𝑑𝑡,  ∀𝜇 ∈ 𝐻𝑅

1(0, 𝑇; 𝐿2(𝛽2, 𝛽4)). 

Then we have the followig result  

Theorem 2.2 Let 𝑇 > 0. Assume that 𝑎2 = 1 and let  

 𝑈0 = (𝑢0, 𝑢1, 𝑦0, 𝑦1 , 𝜙0, 𝜙1, 𝜓0, 𝜓1) ∈ C,  𝑣 = −
𝑑

𝑑𝑡
𝑣0 ∈ [𝐻𝑅

1(0, 𝑇; 𝐿2(𝛽2, 𝛽4))], 

then (1.9)-(1.10) has a unique weak solution  

 𝑈 = (𝑢, 𝑢𝑡 , 𝑦, 𝑦𝑡 , 𝜙, 𝜙𝑡 , 𝜓, 𝜓𝑡) ∈ 𝐶
0([0, 𝑇]; C), 

where  

 C = {
[𝐿2(0, 𝐿0) × (𝐻𝐿

1(0, 𝐿0))]
2 × [𝐿2(𝐿0, 𝐿) × (𝐻𝑅

1(𝐿0, 𝐿))]
2

suchthat   𝑝(𝐿0) = 𝜂(𝐿0)    and    𝑞(𝐿0) = 𝜉(𝐿0)    
}. 

Proof. Let (𝑝, 𝑝𝑡 , 𝑞, 𝑞𝑡 , 𝜂, 𝜂𝑡 , 𝜉, 𝜉𝑡) be the solution of the homogeneous system (2.1)-(2.2). Multiplying (1.9)1 by 𝑝, 

(1.9)2 by 𝑞, (1.9)3 by 𝜂, (1.9)4 by 𝜉, integrating by parts on (0, 𝑇) × (0, 𝐿0) for the first two equations and integrating 

by parts on (0, 𝑇) × (𝐿0, 𝐿) for the last two equations, then summing up, we get  

 ∫ 𝑢𝑡(𝑇)𝑝(𝑇)𝑑𝑥
𝐿0
0

+ ∫ 𝑦𝑡(𝑇)𝑞(𝑇)𝑑𝑥
𝐿0
0

+ ∫ 𝜙𝑡(𝑇)𝜂(𝑇)𝑑𝑥
𝐿

𝐿0
+ ∫ 𝜓𝑡(𝑇)𝜉(𝑇)𝑑𝑥

𝐿

𝐿0
 

 −∫ 𝑝𝑡(𝑇)𝑢(𝑇)𝑑𝑥
𝐿0
0

− ∫ 𝑞𝑡(𝑇)𝑦(𝑇)𝑑𝑥
𝐿0
0

− ∫ 𝜂𝑡(𝑇)𝜙(𝑇)𝑑𝑥
𝐿

𝐿0
− ∫ 𝜉𝑡(𝑇)𝜓(𝑇)𝑑𝑥

𝐿

𝐿0
 

 = ∫ 𝑢𝑡(0)𝑝(0)𝑑𝑥
𝐿0
0

+ ∫ 𝑦𝑡(0)𝑞(0)𝑑𝑥
𝐿0
0

+ ∫ 𝜙𝑡(0)𝜂(0)𝑑𝑥
𝐿

𝐿0
+ ∫ 𝜓𝑡(0)𝜉(0)𝑑𝑥

𝐿

𝐿0
 (2.7) 

 −∫ 𝑝𝑡(0)𝑢(0)𝑑𝑥
𝐿0
0

− ∫ 𝑞𝑡(0)𝑦(0)𝑑𝑥
𝐿0
0

− ∫ 𝜂𝑡(0)𝜙(0)𝑑𝑥
𝐿

𝐿0
− ∫ 𝜉𝑡(0)𝜓(0)𝑑𝑥

𝐿

𝐿0
 

 +∫ ∫ 𝑑2(𝑥)𝑣(𝑡)𝜂𝑑𝑥𝑑𝑡
𝐿

𝐿0

𝑇

0
. 
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Note that  

 H′ = {
[(𝐻𝐿

1(0, 𝐿0)) × 𝐿
2(0, 𝐿0)]

2 × [(𝐻𝑅
1(𝐿0, 𝐿)) × 𝐿

2(𝐿0, 𝐿)]
2

suchthat   𝑝(𝐿0) = 𝜂(𝐿0)    and    𝑞(𝐿0) = 𝜉(𝐿0)
}, 

consequently, we obtain  

 ⟨(𝑢𝑡(𝑇), −𝑢(𝑇), 𝑦𝑡(𝑇), −𝑦(𝑇), 𝜙𝑡(𝑇), −𝜙(𝑇), 𝜓𝑡(𝑇), −𝜓(𝑇)), 𝑉(𝑇)⟩H′×H 

 = ⟨(𝑢1, −𝑢0, 𝑦1, −𝑦0, 𝜙1, −𝜙0, 𝜓1, −𝜓0), 𝑉0⟩H′×H + ∫ ∫ 𝑑2(𝑥)
𝐿

𝐿0

𝑇

0
𝑣(𝑡)𝜂𝑑𝑥𝑑𝑡 (2.8) 

 = 𝐹(𝑉0). 

Thanks to the direct observability inequality (2.5), we have  

 ‖𝐹‖L(H,R) ≤ ‖𝑣0‖𝐿2(0,𝑇;𝐿2(𝛽2,𝛽4))
+ ‖𝑈0‖H′. (2.9) 

By the help of the Riesz representation theorem, there exists a unique element 𝑍(𝑥, 𝑡) ∈ 𝐻′ solution of  

 𝐹(𝑉0) = ⟨𝑍, 𝑉0⟩H′×H  ∀𝑉0 ∈ H. (2.10) 

Then, 𝑈(𝑥, 𝑡) = 𝑍(𝑥, 𝑡) is the weak solution of the control system (1.9)-(1.10).  

We now turn to the analysis of the problem of locally internal exact controllability. Specifically, given a sufficiently 

large time 𝑇 > 0 and an initial state 𝑈0, we investigate whether there exists an appropriate control function 𝑣 such 

that the corresponding solution of the control system (1.9)-(1.10) reaches the equilibrium at time 𝑇, i.e., 

 𝑢(𝑇) = 𝑢𝑡(𝑇) = 𝑦(𝑇) = 𝑦𝑡(𝑇) = 𝜙(𝑇) = 𝜙𝑡(𝑇) = 𝜓(𝑇) = 𝜓𝑡(𝑇) = 0. 

By employing the Hilbert Uniqueness Method, we obtain the following result: 

Theorem 2.3 Assume that 𝑎2 = 1. For every 𝑇 > 𝐶1, where 𝐶1 is given in (2.5) and for every 𝑈0 ∈ H′, there exists a 

control 𝑣(𝑡) ∈ [𝐻𝑅
1(0, 𝑇; 𝐿2(𝛽2, 𝛽4))], such that the solution of (1.9)-(1.10) satisfies  

 𝑢(𝑇) = 𝑢𝑡(𝑇) = 𝑦(𝑇) = 𝑦𝑡(𝑇) = 𝜙(𝑇) = 𝜙𝑡(𝑇) = 𝜓(𝑇) = 𝜓𝑡(𝑇) = 0. 

Proof. From the indirect inequalities (2.5), we consider the seminorm defined by  

 ‖𝑉0‖H
2 = ∫ ∫ |𝜂𝑡|

2𝛽4
𝛽2

𝑇

0
𝑑𝑥𝑑𝑡, 

where 𝑉 = (𝑝, 𝑝𝑡 , 𝑞, 𝑞𝑡 , 𝜂, 𝜂𝑡 , 𝜉, 𝜉𝑡 , ) is the solution of (2.1)-(2.2) associated to the initial condition 𝑉0. Taking the control 

function 𝑣 =
𝑑

𝑑𝑡
𝜂𝑡. Now, we solve the following time reverse problem:  

 

{
  
 

  
 

𝜍𝑡𝑡 − 𝑎1𝜍𝑥𝑥 + 𝑐1(𝑥)𝜒 = 0,                       (𝑥, 𝑡) ∈  (0, 𝐿0) × R+
∗ ,

𝜒𝑡𝑡 − 𝜒𝑥𝑥 + 𝑐1(𝑥)𝜍 = 0,                           (𝑥, 𝑡) ∈  (0, 𝐿0) × R+
∗ ,

Φ𝑡𝑡 − 𝑎2Φ𝑥𝑥 + 𝑐2(𝑥)Ψ𝑡 = 𝑑2(𝑥)
𝑑

𝑑𝑡
𝜂𝑡 , (𝑥, 𝑡) ∈  (𝐿0, 𝐿) × R+

∗ ,

Ψ𝑡𝑡 −Ψ𝑥𝑥 − 𝑐2(𝑥)Φ𝑡 = 0,                      (𝑥, 𝑡) ∈  (𝐿0, 𝐿) × R+
∗ ,

(𝜍, 𝜒, 𝜍𝑡 , 𝜒𝑡)(𝑥, 𝑇) = (0,0,0,0),                𝑥 ∈  (0, 𝐿0),

(Φ,Ψ,Φ𝑡 , Ψ𝑡)(𝑥, 𝑇) = (0,0,0,0),          𝑥 ∈  (𝐿0, 𝐿).

 (2.11) 

Using Theorem 2.2, the system (2.11) admits a unique solution  

 𝑍 = (𝜍, 𝜍𝑡 , 𝜒, 𝜒𝑡 , Φ,Φ𝑡 , Ψ,Ψ𝑡) ∈ 𝐶
0([0, 𝑇]; H′). 

Define the operator  
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 Λ: H → H′ 

 𝑉0 ↦ Λ𝑉0 = (𝜍𝑡(0), −𝜍(0), 𝜒𝑡(0), −𝜒(0), Φ𝑡(0), −Φ(0),Ψ𝑡(0), −Ψ(0)), 

∀𝑉0 ∈ 𝐻. Besides, we define the following linear form  

 ⟨Λ𝑉0, 𝑉0


⟩ = ∫ ∫ 𝜂𝑡𝜂𝑡
𝛽4

𝛽2

𝑇

0
𝑑𝑥𝑑𝑡 = (𝑉0, 𝑉0



)
H
,  ∀𝑉0



∈ H, (2.12) 

where (⋅,⋅)𝐻 is the scalar product related to the norm ‖⋅‖𝐻. Using Cauchy-Schwarz’s inequality in (2.12), we have 

that  

 |⟨Λ𝑉0, 𝑉0


⟩
H×H′

| ≤ ‖𝑉0‖H ‖𝑉0


‖
H
,   ∀𝑉0, 𝑉0



∈ H. (2.13) 

In particular, we obtain  

 |⟨Λ𝑉0, 𝑉0⟩H×H′| = ‖𝑉0‖H
2 ,   ∀𝑉0 ∈ H. 

Using (2.5), we deduce that the operator 𝛬 is coercive and continuous on 𝐻. Thanks to Lax-Milgram theorem, we 

have 𝛬 is an isomorphism from 𝐻 into 𝐻′. In particular, for every 𝑈0 ∈ 𝐶, there exists a solution 𝑉0 ∈ 𝐻 such that  

 Λ𝑉0 = −𝑈0 = (𝜍𝑡(0), −𝜍(0), 𝜒𝑡(0), −𝜒(0), Φ𝑡(0), −Φ(0),Ψ𝑡(0), −Ψ(0)). 

It follows from the uniqueness of the solution of the time reverse problem (2.11) that  

 𝑈 = 𝑍. 

Consequently, we obtain  

 𝑢(𝑇) = 𝑢𝑡(𝑇) = 𝑦(𝑇) = 𝑦𝑡(𝑇) = 𝜙(𝑇) = 𝜙𝑡(𝑇) = 𝜓(𝑇) = 𝜓𝑡(𝑇) = 0. 

3. Conclusion 

In the paper [1], we studied the stabilization of a local transmission problem involving two wave systems. The 

first system is weakly coupled, whereas the second is strongly coupled with non-smooth coefficients. It was shown 

that the energy of the system decays exponentially under the condition of equal wave propagation speeds (i.e., 𝑎2 =

1). 

In the present work, we establish the equivalence between the exponential stability of the system (1.1)â€“(1.4) 

and an appropriate observability inequality, by applying a result of A. Haraux in [3]. Then, using the Hilbert 

Uniqueness Method (HUM), introduced by J. L. Lions in [9], we deduce the exact controllability of the problem. 

Conflict of Interest 

The authors declare that they have no financial or non-financial conflicts of interest related to this work. 

Funding 

This study was conducted without any external funding support. 

References 

[1] Ben Aissa A, Ahmedi W. Stabilization of a locally transmission problems of two strongly-weakly coupled wave systems. Asymptot Anal. 

2024;1-31. doi:10.3233/ASY-241939. 

[2] Aissa AB. Weak controllability of second order evolution systems and applications. arXiv Prepr. 2013; arXiv:1306.4833. 



Ahmedi and Aissa Mathematical Structures and Computational Modeling, 1, 2025 

 

120 

[3] Haraux A. Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Port Math. 1989;46:245-58. 

[4] Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: Springer-Verlag; 1983. (Applied 

Mathematical Sciences; vol. 44). 

[5] Wehbe A, Youssef W. Indirect locally internal observability of weakly coupled wave equations. Differ Equ Appl. 2011;3(3):449-62. 

[6] Alabau F. Observabilité frontière indirecte de systèmes faiblement couplés. C R Acad Sci Paris Sér I Math. 2001;333(7):645-50. 

[7] Alabau-Boussouira F. A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic 

systems. SIAM J Control Optim. 2003;42(3):871-906. 

[8] Akil M, Hajjej Z. Exponential stability and exact controllability of a system of coupled wave equations by second-order terms (via Laplacian) 

with only one non-smooth local damping. Math Methods Appl Sci. 2023;1-20. 

[9] Lions JL. Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués: Perturbations. Paris: Masson; 1988. (Recherches en 

Mathématiques Appliquées). 

[10] Gerbi S, Kassem C, Mortada A, et al. Exact controllability and stabilization of locally coupled wave equations: theoretical results. Z Anal 

Anwend. 2021;40:67-96. 

 


