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1. Introduction

A cornerstone in the unification of continuous and discrete analysis is the theory of dynamic equations on time
scales, pioneered by Stefan Hilger in his seminal 1988 work. This powerful framework provides a robust
methodology for modeling phenomena that inherently blend continuous and discrete dynamics, finding profound
applications across biology, physics, and engineering. By offering a unified formalism that seamlessly generalizes
standard differential and difference equations, the time scales calculus has facilitated significant advances in the
analysis of complex dynamic systems. Due to their significance in applications, extensive research has been
conducted on dynamic equations on time scales within diverse fields, including control theory, economics, and so
on [1, 6]. Some numerical methods for dynamic equations on time scales were explored in [5]. Building on this
foundation, the development of fuzzy dynamic equations on time scales was pioneered by Fard and Bidgoli [3] to
incorporate uncertainty into this framework, enabling the modeling of real-world systems with imprecise or vague
data. This theory has been applied to investigating the uniqueness and existence of solutions to fuzzy dynamic
equations on time scales, as exemplified in [2, 4, 8].

George Adomian established the Adomian decomposition method (ADM) in the 1980s. The ADM has received
much attention in recent years in applied mathematics and in the field of infinite series solution. It is an effective
method to solve many types of linear, nonlinear, ordinary, or partial differential equations and integral transforms
(such as the Volterra and Fredholm integral transforms).

In this paper, we introduce the Adomian decomposition method for a class of first order fuzzy dynamic equations
on arbitrary time scales. More precisely, we apply the Adomian decomposition method for the following class of
first order fuzzy dynamic equations

Spy =f(), te(t,T] M
y(to) = Yo (2)
where

feC(ty, TIXF(R)),f:F(R)—>F(R),t,Te€T,Tisan arbitrary time scale with forward jump operator and delta
differentiation operator ¢ and 4, respectively.

Here F( R) denotes the set of all real fuzzy numbers, 0 denotes the zero fuzzy number and &, denotes the first
type fuzzy delta derivative on T.

The problem (1) was investigated in [7] on arbitrary time scales for existence of solutions. The authors used some
recent fixed point theorems to prove existence of at least one solution and existence of multiple solutions. To the
best of our knowledge, there is a gap in the references for investigations of numerical methods for fuzzy dynamic
equations on time scales. Here, in this paper we try to fill out this gap introducing the Adomian decomposition
method for a class of fuzzy dynamic equations on arbitrary time scales..

This paper is organized as follows. In the next section, we make an exposition of the Adomian decomposition
method on time scales. In Section 3 we introduce the Adomian decomposition method for the problem (1), (2). In
Section 4, we give a numerical example. A conclusion is made in Section 6.

Throughout this work, we assume a good knowledge on time scale calculus and fuzzy time scale calculus.
2. The Adomian Decomposition Method on Time Scales

Suppose that T is a time scale with forward jump operator and delta differentiation operator ¢ and 4,
respectively. For t,s € T, define the monomials

ho(t,s) =1, Ryss(t,s) = [ h(z,5)6r.
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For our investigations in this section, we have a need of the following auxiliary result.

Theorem 2.1 For every m,n € N, we have
m+n Apm
hn(t, @)y (t, ) = XL (ZAzmes,S? h, ™ (a, a)) h(t, a)

for every t,a € T, where S is the set consisting of all possible strings of length I, containing exactly m times o and
[ —mtimes 4.

Proof. If m = 0 or n = 0 the assertion is evident. Suppose that m # 0 and n # 0. By the Taylor formula, we have
M (t, @) o (8, @) = 220 (i (£ @) h (£, €)X |e— oy (£, ).
By the Leibnitz rule, we have
(a6, @l (6, @D)* = Bhcg (£, 50 I (60 ) Y (6, ).
Letl < m. Then
(a6, @l (6, ) = Thoo (8, 0 B 6.0 ) o 6,0
From here, for | < m, we obtain h,,_;(a, @) = 0 and therefore

(R (t, @) g (8, @) [ = 0.

Let now, [ = m. Then, using that hy(t, @) = 1, we get

l _ A
(n(ts Dl (60 e = ZE3 (Z, 50 B 60 ) B (8, e
A
+ 2 es® ™ (6 D le=a
A
= ZAl,mesy(y? hnl'm (a, a).
Hence, using the fact that 4,,, consists of m times ¢ and [ —m times 4, and
fe=f or f7 = f+ufs,

f+uf+u(f2 +uf),

fO'O' - f or fO'O'

and so on, we obtain

ha (t, @) b (8, @) 252 (i (£ @i (8, @)™ e (£, @)

[oe] Am
= 32 (2,50 hn' " (@ @) hu(t, )

A m
= Ziw (ZAzmes,(,? b (@ a)) hu(t, @),
which completes the proof.

Fors €T, l,m,n € Ny, set

A,
Al,m,n,s = ZAlmes-r(rll) hn m(S, S)
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and for any m,n € Ny, applying Theorem 2.1, we have
ho(t, $)hin (8, 5) = ZiZ0 Apmn,shu (8, 9).
For n € Ny, t,s € T, define the polynomials
Hl(t,s) = (hy(t,8)", ¢t Ss€ET.
Note that
HL(t,s)HL (t,s) = H: . (t,s), ts€ET.
Note also that
Hi(t,s) = hy(t,s),
and by (3), we get
H(t,s) = hy(t,s)hy (L, s)
=Y Apiashi(ts)
=A11150(t8) + Az115h2(E,S)
= A11,1,sH1 (£,5) + Az 1152 (8, 5),
whereupon
ha(t,s) = —EAHI () + —— H}(L,5),

and so on. Below we denote by B/, i,j € N, the constants for which

Hi(t,s) = Bl'hy(t,s) + BYhy(t,s) + -+ Bh,(t,s), t,s€T.

Example 2.1 Let « € R. Then

eq(t,s) = 1+ ahy(t,s) + a®hy(t,s) + -

1+ aH{(t,s)

Al 1,1,s
+a? <— —~—Hi(t,s) +
A2,1,1,s A2,1,1,s

Hzl(t,s)> 4o

A
= 1+<a—a2ﬂ+m)H11(t,s)

2,11,

az
+< +---)H21(t,s)+---.

A2,1,1,S

Suppose that u: T — R is a given function which has a convergent series expansion of the form

u= Z;‘;O u;.
Suppose also that g: R - R is a given analytic function such that
g(u) = Z;?:O An (uOJuli Eh un)!

where 4,, n € N, are given by
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Ay = g (o)
A, = ¥ . .c(v,n)g™ (uy),n €N.

Here the functions c(v,n) denote the sum of products of v components u; of u given in (6), whose subscripts sum
up to n, divided by the factorial of the number of repeated subscripts, i.e.,

Ay = g(uo),

A; = c(L1)g' (uo)

=u1 9" (W),

Ay = c(1,2)g" (uo) + ¢(2,2)g" (uo)
’ u% 17

=u,g'(u) + -9 (uo),

Az =c(1,3)g" (uo) + ¢(2,3)g" (uo) + ¢(3,3)9" (uo)
3

= u39' (o) + Urt29" (o) + 5 g"" (o),

Ay =c(1,48)g' (ug) + c(24)g" (ug) + c(34)g"" (uo) + c(4,4)g™ (uo)

u%uz

= 4" (tg) + (125 +2) " (1) + 12 9" (1) + 4 g (u15)
and so on. Suppose now that u is given by the convergent series
u = 3o cHy (%, %) (8)
We wish to find the respected transformed series for g(u). From (6), we have

u= Z;‘f:O Up = Z:f:o CnHrll (X, xO)l

and hence,
u, = c,Hi(x,xy) m € N,.
Thus,
g@W) = Xr=oAn (Uo, Uy, v, Un)
= g(Xno ¢ Ha(x, o))
= Ym=0 A" (Co, €1, ey ) HA (X, Xo).
Hence,

Ay (Ug, Uy, ooy Uy) = A™(Co, €1y wov s €)Y HE (%, Xg).
For n = 0, we have
Uy = coHg (x, o).
= ¢,.
Thus,
Ao (uo) = A%(co)H3 (x, %)
= A°%(co)
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Forn =1, we find
A;(ug, uy) = u9' (ug)
= A*(co, ¢1)H] (%, %)
or
ciHi(x,%0) 9" (ug) = A(co, ¢1)Hi (x, x0),
whereupon
A'(co,¢1) = 19" (o)
= ¢19'(co)
= A4(cy, q).
For n = 2, we have

Az (ug, uq,up) = A? (Co» €1, €2)H; (x, %)

or
2
Uz9' (o) + 519" (o) = A%(co, €1, €2)H3 (x, Xo).
Then
li Z(Hl ” 2 n
¢, H3 (%, %0) g’ (o) + TR g (cy) = A%(co, €4, €) H3 (x, %),
or
2
(c20 (o) + L 9" (co) ) H (x, %0) = A% (co, 1, €) HE (. Xo),

whereupon

A%(co,¢1,€2) = €29'(co) + ?9”(50)
= A, (co, €1, C2).
For n = 3, we find
uzg’(uo) +uru2g" (uo) + 1;_?gm(uo) = A3(uo, Uy, Uy, U3)
= A3(co, €1, €2, €3) H3 (%, Xo)
or
c3Hz (x,%0) g’ (co) + €162 H3 (%, %0) 9" (%) + %g’”(co)Hg (x, %0) = A%(co, €1, €2, €3)H3 (%, %),
whereupon
c39'(co) + c1629" (%) + ;_%!g"’(co) = A%(co, €1, €2, €3)

= A3(co, €1,¢3,C3),
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and so on. Therefore we get the following result.

Theorem 2.2 Let w: T — R be a function with a convergent expansion given in (8). Let g:R - R be an analytic
function having the form (7). Then

gW) = g(Er=o crHy (%, %0)) = Yoo An (Cos €1, +rr) €n) Hy (X, X0).
Example 2.2 For a = 1, consider u = e, (x, xo) and g(u) = u?. Using Example 2.1, we have

€q (x’ xo) = Z?Z:o CmH%l (x' xo)

where
c =1,
c=a—a? Zitds +,
A211,s
2
C3 = Azi;,s +
Note that
(ea(x,%0))? = c§ + 2coc Hi (%, %) + . 9

On the other hand, by Theorem 2.2, we obtain

(eq(x, xo))z = Ym=0 A Hp, (x,%0)

and

Ag(uo) = Ao(co)

Aq(ug,ug) = ¢19'(co)
= 26061
and so on, i.e., we get (9).

3. The Adomian Decomposition Method for the Problem (1), (2)

In this section, we will introduce the Adomian decomposition method for the problem (1), (2). Firstly, note that
the problem (1), (2) can be rewritten in the form

5 = [fronf o] teT

.7 @) = [y&. 5], «elol,
Consider the problem

YR =fC0), t>ty y(t) =0, (10)
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where f*:R - R is an analytic function. We propose a solution of the IVP (10), in the form
Xa(t) = Z?Ozo ngjl (t’ to), t 2 to.
In addition, assume that

fEO) = E04; (Cor o H} (B 20),  E 2 1o

Note that
YE(t) = Co + X521 Dey €GBk (B 80), £ 2 o
and
fEO) = Ao(co) + 2521 Ther Aj (o s B (E 1), £ 2= 1,
Let

L(y*(0) @ = Y(@).
Then, we have the following
L(y™ () @ = 2Y(2) — y*(to) = 2 (2).
Now, we take the Laplace transform of both sides of the dynamic equation (10) we obtain

zY (2)

L(Ao(co) + X5 Y Aj (co, - 'Ej)EJihk (t to))(z)
1 o wj i1
Ao (co) -t Xie1 AN Aj (co, ---'Ej)ﬁé pre

Thus, we arrive at

1 © i i 1
Y(2) = Ag(co) 5 + Xj21 Tiees 4 (Co - DB s
Now, we apply the inverse Laplace transform of both sides of the last equation and we find
() = Ag(eo)hi (t, o) + X521 Tiemy Aj (Cos -, €)BL hycss (6, 8).

Using (11), we get

Co t Z}i1 Z{{:l Ejﬁ}i hy (t,t0) = Ag(co)hy(t, to) + Z;o=1 Z{(:1 ﬂj (o, "'!Ej)B}ihk+1(t' to)-

(11)

(12)

In order to equate the coefficients of the time scale monomials h;(t, t,) on both sides, we reorder the sums as

follows.

Ct+ (Z?:l Ejﬁ{)hl (t to) + Z;‘i":z(Z?';k Ejﬁ;{) hy (¢, t0)
= Ao(co)hi(t, o) + 2=z Zﬁk—l Aj (co) - r£j)§é-1hk(t’ to)-

This results in the following nonlinear system for determining the constants c;, j = 0,1, ....

So = 0,
Iy £j§1j = Ap(co) = fx(o)
Z?’;kng] = Z}?Ozk—léj (o) ---’Ej)Eli—p k = 2.
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Notice that the system is infinite and nonlinear in its unknowns. However, the nonlinearity is of polynomial type.
This is a results of the nonlinear structure of the function f«.

Now, consider the problem
—al -
yo=f ) t>t, y()=0, (14)
where j_fa: R — R is an analytic function. We will search a solution of the IVP (14), in the form
ya(t) = Zﬁo EjHj1 (t, to): t =t
Assume that
p—4 — _
f ) =2XZ04; Cor s HH} (t ), 2t
We have
FE() = Co + X%y Thoy GBrhy (L t)), 21, (15)
and
—a — _ . . —_ _ _]
f ) =4(co) + Zj:12{(=114j (€o, » €))Brhy(t, tp), t =t (16)

As above, we get the following system for the constants ¢;, j = 0,1, ....

CO = 0,
- A (= rad
Xiz1¢Br = Ay(co) =f (0) (17)
o — =i o = - =i
Zj=k CjBk = Zj=k—1Aj (CO""'Cj)Bk—l' k > 2.

4. A Numerical Example

Consider the initial value problem associated with the first order nonlinear fuzzy dynamic equation of the form

=, 5

®)] = [e®®,e2@®], £>0, y(t) =[0,0], (18)
€ [0,1]. Consider the IVP
y () = e®®, y°(0) =0.
Assume that the solution has the series representation
() = T2 GH} (£,0), t20,
where ¢;, j € N, are the coefficients to be determined.
f) =e™® =324 (co, ... )H; (£,0), t=0,

where
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Ay = f (o)
— e%co
A = c1f'(co)
= ace*c
2
A, = caf'(co) + %f”(co)
(acy)?
= (acz + %) e%co
3
A; = caf'(co) + craf " (co) + o " (co)

3
ac
(ac3 + a’cic, + Q) e%co
3!

Ay

(occz)2 4 @it +(ac1)4> @0

ac +acc+
(4 1 2 41

The infinite nonlinear system for this example has the form

CO = 0,
ClBll + CzBlz + C3Bls + - = 1

ac,Bf + (acz + (acl) )Bl

(a02 + (Ml) )Bz

c;B? + ¢3B3 + ¢, By +

c3B3 + c4By + csB3 +

caf '(eo) + (e263 + L) (o) + B2 £ (o) + S £ D (co)

(19)

(20)

Solving this nonlinear system one can approximately obtain ¢;, i € N, and hence, the approximate solution of the

initial value problem which is

Y (t) = c1Hi (t,0) + c;H; (t,0) + c3H3 (¢, 0) + -+

As above,
¥ (t) = ¢ Hi(t,0) + T,HA(t,0) + C3HA (L, 0) + -
where
Co = 0,
Bl +C,B? +C3B3 + -+ = 1

C,BZ +C3B; +C,By +

207, B} + (207, + (2‘”1) )B1
(202, + (2‘”1) )Bz

C3B3 + 4By + TsBS +

Let T =2Noand t, = 1. Then a(t) = 2t, t € T, and
hi(t, to) = hy(t, 1)
=t—1, te€eT.
Next,
t? 2
hy(t,te) ==——t+=, teT.
3 3
Really,

a(t)+t

ha(t, ty) = -1

82
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=t—1

= hl(t, to), teT.

Moreover,
t3 2 2 8
h3(t,t0)=H—?+§t—Z, tET.
Indeed,
A _ (e@)*+ta(®)+t? o)+t | 2
hs (t,to) = 21 3 +3
_ @D%*+tot?  2t+t | 2
- 21 3 3
_ 4?42t 3t 2
- 21 3 3
e .2
T2 3
=izl
3
= hz(t, to), teT.
Note that
Ha(t,to) = (¢ — to)"
=(t-1D" teT.
Then
Hj(t,to) = (¢ —1)°
=t2-2t+1,

H3(t,tp) = (t—1)°

Forn =1, we get
Hi(t,ty) = Bthy(t, ty), tET,
whereupon
t—1=Bi({t—-1), teT.
Therefore B} = 1. For n = 2, we find
Hi(t, ty) = BEh (t, ty) + B2h,(t, ty), tET,

or

_AN2 — p2s _ 2 (2 _ 2
t-12=Bt-D+B3(5-t+3), teT,

83

t3—-3t>+3t—1, teT.

Ramadan et al.



Ramadan et al.

or
2 2 ) 2 2p2
=524 (B2 B2yt +2B2 B2, teT
3 1 2 3 D2 1 )

whereupon we get the system

Z=1
B} —B} = -2
2p2 _p? =1,
whose solutions are
B:=1
B2 =3
Next,
Hi(t,ty) = B3h (L, to) + B3hy(t,ty) + B3hs(t,t,), tET,
or
¢-1°=Bt-D+8} (S—c+3)+B}(L-C+2e-2),
teT,or

3 2 3
3 —3t2+3t—1=B}t—-B+2¢2 B3t +2p3 +2¢3 B2 2p3, B3
3 3 21 3 3 21

T 21 3

whereupon we get the system

B3

_=1

21

3 3
R
3 3

B} —Bj +2B} =3 —B} +-B} ——Bj = -1,

whose solutions are

B3=1
B} =12
B3 =21

Now, we consider the first four equations of (20) with the following approximations
CU = 0

ClBll + CzBf + C3Bf =1

84
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2 3 1 @c)?Y p2
CZBZ + C3BZ = a’ClBl + ((ZCZ + T) Bl

2
;B3 = (acz + (m;l) )BZZ

or
C0=O

C1+C2+C3=1

_
3¢y +12¢3 = acy + (ac, + >

21c3 =3 (ac2 + az;%),

whereupon we get

a?+12a+21+ /(a2 +12a+21)2-4a2(5a+21)

(€112 = 2a? ’
2
o (@?+12a+21+y/(a?+12a+21)2—4aZ(5a+21) a?+12a+21+/(aZ+12a+21)2—4a2(5a+21)

(c2)12 = (- - 14 + 14)

’ 2(a+7) 2a? 2a?

2
_ 1 o (@?+12a+21+/(a?+12a+21)2—4aZ(5a+21) a?+12a+21+/(aZ+12a+21)2—4a2(5a+21)

(c3)12 = (a > -2« > + 2a).

’ 2(a+7) 2a 2a

Replacing a with 2«, we find

4a?+24a+21+/(4aZ+24a+21)2-16a2(10a+21)
8a?

’

(51)1,2 =

2
P (4a2+24a+21iJ(4a2+24a+21)2—16a2(10a+21))
8a?

— 1
(€212 = 557

14 (4a2+24a+21iJ(4a2 +24a+21)2-16a2(10a+21)

8a?

)+14)

2
()1 = 1 ( 2 (4a?+24a+21+/(4a%+24a+21)2-16a2(10a+21)\"
3712 7 Z2a+7) 8a2

4a <4a2+24a+21¢J(4a2+24a+2 1)2-16a2(10a+21)
8a?

)+2a)

Therefore approximative solutions are

yee) = Co + ciHi(t, 1) + ¢, HE (t, 1) + c3Ha (¢, 1)

a?+12a+21+/(aZ+12a+21)2—4a2(5a+21)

= 2 (t - 1)!

2a

2
1 ( o [a?+12a+21+y/(a2+12a+21)2—4a2(5a+21)
2(a+7) 2a?

14 (a2+12a+21¢J(a2+12a+21)2—4a2(5a+21)
2a?

) +14)(t — 1)?

1 2
+ 2(a+7) (a 2

2
(a2+12a+21i\/(a2+12a+2 1)2—4a2(5a+21))
2a

a?+12a+21+/(a?2+12a+21)2—4a2(5a+21)
—2a Py
a

) +2a)(t — 1)
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¥ ()

To + 1 HI(t, 1) + C,HE(t,1) + C3H(E, 1)

4a?+24a+21+/(4a?+24a+21)2-16a2(10a+21)

= t-1

8a?

2
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In Fig. (1) are shown the solutions for a = % in Fig. (2) below are shown the solutions for a = g and in Fig. (3) are
shown the solutions for a = g respectively, att = 1,2,4,8,16,32,64.

5. Conclusions

In the present paper we have presented some aspects of the powerful method introduced by G. Adomian to
solve nonlinear first order fuzzy dynamic equations on arbitrary time scales. Usually this method is known as the
Adomian Decomposition Method, or ADM for short. Firstly, we give an analysis of ADM for arbitrary time scales.
Then, we apply ADM for a class of nonlinear fuzzy dynamic equations in the case when the right hand side of the
equation is an analytic function. The results in this paper are provided with a suitable example. The proposed
technigie in this paper can be applied for second order nonlinear fuzzy dynamic equations on arbitrary time scales.

As future researches the authors intend to apply the Adomian decomposition method for systems fuzzy dynamic
equations on time scales and higher order fuzzy dynamic equations on time scales.
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